60 research outputs found

    Clio: An Autonomous Vertical Sampling Vehicle for Global Ocean Biogeochemical Mapping

    Get PDF
    We report the design, sea trials, and scientific operation of a fast vertical profiling autonomous underwater vehicle, called Clio, designed to cost-effectively improve the understanding of marine microorganism ecosystem dynamics on a global scale by collecting high-volume filter samples autonomously, in contrast to conventional techniques that require a ship’s wire

    Autonomous water sampler for oil spill response

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomez-Ibanez, D., Kukulya, A. L., Belani, A., Conmy, R. N., Sundaravadivelu, D., & DiPinto, L. Autonomous water sampler for oil spill response. Journal of Marine Science and Engineering, 10(4), (2022): 526, https://doi.org/10.3390/jmse10040526.A newly developed water sampling system enables autonomous detection and sampling of underwater oil plumes. The Midwater Oil Sampler collects multiple 1-L samples of seawater when preset criteria are met. The sampler has a hydrocarbon-free sample path and can be configured with several modules of six glass sample bottles. In August 2019, the sampler was deployed on an autonomous underwater vehicle and captured targeted water samples in natural oil seeps offshore Santa Barbara, CA, USA.This work was supported by the United States Bureau of Safety and Environmental Enforcement under contract number E18PG00001

    Mesobot : An Autonomous Underwater Vehicle for Tracking and Sampling Midwater Targets

    Get PDF
    Mesobot, a new class of autonomous underwater vehicle, will address specific unmet needs for observing slow-moving targets in the midwater ocean. Mesobot will track targets such as zooplankton, fish, and descending particle aggregates using a control system based on stereo cameras and a combination of thrusters and a variable buoyancy system. The vehicle will also be able to collect biogeochemical and environmental DNA (eDNA) samples using a pumped filter sampler

    A new (string motivated) approach to the little hierarchy problem

    Full text link
    We point out that in theories where the gravitino mass, M3/2M_{3/2}, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electroweak symmetry breaking (EWSB) are satisfied without large imposed cancellations. Compactified string/M-theory with stabilized moduli that satisfy cosmological constraints generically require a gravitino mass greater than about 30 TeV and provide the natural explanation for this phenomenon. We find that even though scalar masses and trilinear couplings (and the soft-breaking BB parameter) are of order (10-50)TeV, the Higgs vev takes its expected value and the Ό\mu parameter is naturally of order a TeV. The mechanism provides a natural solution to the cosmological moduli and gravitino problems with EWSB.Comment: 6 pages, 3 figs, V2 has additional comment

    RV Kronprins HĂ„kon (cruise no. 2019708) Longyearbyen – Longyearbyen 19.09. – 16.10.2019

    Get PDF
    The HACON cruise is a major component of the FRINATEK HACON project, which aims at investigating the role of the Gakkel Ridge and Arctic Ocean in biological connectivity amongst ocean basins and global biogeography of chemosynthetic ecosystems. The HACON study area is centered in the Aurora seamount and Aurora vent field

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1

    Get PDF
    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component

    Brain clocks capture diversity and disparities in aging and dementia

    Get PDF
    Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (RÂČ = 0.37, FÂČ = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</p

    Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

    Get PDF
    Peer reviewe
    • 

    corecore