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Clio: An Autonomous Vertical Sampling Vehicle for

Global Ocean Biogeochemical Mapping

Michael V. Jakuba∗, John A. Breier†, Daniel Gómez-Ibáñez∗, Kaitlyn Tradd∗, and Mak A. Saito∗

∗Woods Hole Oceanographic Institution, Woods Hole, MA USA
†University of Texas, Rio Grande Valley, Edinburg, TX USA

Abstract—We report the design, sea trials, and scientific oper-
ation of a fast vertical profiling autonomous underwater vehicle,
called Clio, designed to cost-effectively improve the understand-
ing of marine microorganism ecosystem dynamics on a global
scale by collecting high-volume filter samples autonomously, in
contrast to conventional techniques that require a ship’s wire.

I. INTRODUCTION

We report the design and sea trials of a fast vertical profiling

autonomous underwater vehicle, called Clio (Fig. 1), designed

to cost-effectively improve the understanding of marine mi-

croorganism ecosystem dynamics on a global scale.

Life processes and ocean chemistry are linked: ocean

chemistry places constraints on marine metabolic processes,

and life processes alter the speciation, chemical associations,

and water-column residence time of seawater constituents.

Advances in sequencing technology and in situ preserva-

tion have made it possible to study the genomics (DNA),

transcriptomics (RNA), proteomics (proteins and enzymes),

metabolomics (lipids and other metabolites), and metallomics

(metals), associated with marine microorganisms; however,

these techniques require sample collection. To this end, Clio

carries two to four Suspended-Particle Rosette (SUPR) multi-

samplers [1] to depths of 6000 m. Clio has been designed

specifically to complement conventional wire-based sampling

techniques—to operate simultaneously and independently of

conventional techniques to improve ship-time utilization. Clio

transits vertically between the surface and 6000 m depth, stop-

ping at multiple pre-programmed depths to filter up to 250 l/hr

of seawater per sample (Fig. 2). Clio can optionally administer

an in situ preservative (RNA Later) after completing each

sample.

As an Autonomous Underwater Vehicle (AUV) devoted

entirely to vertical motion, Clio occupies an uncharacteristic

design space. Clio must efficiently hold station at multiple

depths between the surface and 6000 m, but must also move

rapidly between sampling depths to keep dives short. It must

be chemically clean and avoid disturbing the water column

while sampling. Clio must be operationally friendly, requiring

few personnel to operate, and have minimal impact on ship-

board operations. We selected a positively-buoyant thruster-

driven design without ascent/descent weights or a variable

ballast system. Thrusting constantly to overcome static positive

buoyancy incurs and energetic penalty, however, we argue that

for Clio, the benefit in terms of reduced vehicle and operations

complexity outweighs the cost of an incremental increase in

Fig. 1. Clio aboard the R/V Atlantic Explorer in April 2018. The intake ports
for one of two SUPRs are visible on the right-hand side of the panel bearing
the vehicle’s name. One of two thrusters is visible between the hulls.

battery capacity. In what follows we describe Clio’s design

in more detail, the trades that drove our design decisions,

and devote particular attention to the hydrodynamic stability

of Clio’s hull-form, and predicting and managing vehicle

compressibility and its effects on buoyancy.

II. BACKGROUND AND RELATED WORK

Current practice in water column sampling primarily relies

on discrete sampling devices attached to a cable or wire and

lowered by winch from a ship. Water samples are collected by

Niskin and GO-Flo bottles on water carousels and suspended

particulates are collected by wire-deployed large volume in



Fig. 2. Clio concept of operations for a 16-sample profile shown schematically as depth vs. time (the vehicle does not actively control its horizontal position).
The vehicle begins its dive after being deployed using a support ships crane, A-frame or J-frame. Upon reaching the near sea floor, Clio begins its ascent,
thrusting upwards between sample depths, and engaging a closed-loop controller to hold depth for the duration of each filtering operation. The vehicle completes
its dive in 14 hours. Operators can optionally track the vehicle during its dive using an acoustic ranging system (WHOI Micro Modem [2]) and receive regular
vehicle status information with integrated acoustic telemetry. The vehicle alerts operators to its arrival back on the surface using four independently-powered
beacons: a pair of redundant GPS/Iridium units to provide over-the-horizon location, and radio-frequency and strobe beacons for line-of-sight location. Our
recovery procedure is modeled after other mid-size AUV systems.

situ stand-alone pumps. A number of Autonomous Underwater

Vehicles (AUVs) have been equipped with sampling payloads,

including with the MBARI Gulper [3] and with the Suspended-

Particle Rosette (SUPR) sampler [4]. The SUPR sampler

family of instruments was originally developed for deep-sea

hydrothermal plume studies from Remotely Operated Vehicles

(ROVs) [1], [5]; and is the basis of the Clio sampling system.

However, most AUVs and ROVs are designed for seafloor

work or lateral surveys and are not well suited to sampling the

ocean water column from surface to seafloor, i.e. for profiling.

Profiling floats and gliders designed specifically to profile are

not large enough and lack sufficient battery capacity to carry

significant sampling payloads. Clio was designed specifically

for this vertical ocean profile sampling task.

Clio is capable of deploying as many as four independent

SUPR samplers, each capable of sequentially collecting from

10 to 19 samples per deployment depending on sample type.

Each Clio SUPR system consists of a large multi-port valve,

a Mclane Laboratories pump, a digital flowmeter, associated

control and drive electronics, and custom filter and sample

holders. In concept a wide variety of filtering media and

sample holders can be used in the system, but currently the

primary filter media type used has a diameter of 142 mm,

typically with a 0.2 micron poresize membrane. The primary

sample container that holds this filter also retains aliquot

samples of whole water and filtrate.

The Clio SUPR multi-samplers collect individual samples

comparable to those collected with single-point wire-deployed

pumping systems, e.g., McLane Research Laboratories, WTS

pumping systems. Multiple of these samplers are typically

deployed on a hydrographic wire at specified intervals as they

are lowered over the side. The pumps are pre-programmed to

begin and end pumping on a schedule designed to accommo-

date lowering of the wire so as to deliver a simultaneous profile

at discrete depths, with a resolution limited by the number of

samplers available. Once deployed, the Clio system operates

independently, freeing the ship to carry out simultaneous tasks

(not possible when performing analogous sample collection

with a wire-deployed system). The Clio system can, further-

more, collect samples at precise depths, whereas ship heave

from wave action and other ship motion cause wire-deployed

systems to smear samples over depth intervals typically several

meters to tens of meters thick depending on weather and sea

state. Clio can potentially also deliver near-surface samples

free from ship-derived contamination (this capability has not

yet been quantitatively confirmed). Future adaptive sampling,

e.g., tracking and sampling a feature within a water-column

layer with in situ instruments, is rarely practical with a wire-

based technique but is very feasible with an AUV such as

Clio.



Fig. 3. A rendering of Clio showing its essential components. One of two
large skin panels used to access the SUPRs is shown removed. Four fasteners
allow rapid removal and installation of these panels so that the SUPR filter
stacks spend minimal time on deck. The vehicle’s body-frame axis convention
is shown in green.

TABLE I
Clio SPECIFICATIONS

Air weight <700 kg
Size H 2.1 m × W 1.2 m × D 1.3 m
Maximum depth 6000 m
Vertical transit speed 0.75 m/s
Battery 4 kWh

Attitude Microstrain GX4-25
Depth Paroscientific Nano-resolution Digiquartz
Altimeter Valeport

SUPR Up to 4 units; each unit 9 or more sample sets
Profiling instruments SBE49 FastCAT CTD, WetLabs fluorometer

(Chl/NTU), Aanderra optode, CStar transmis-
someter; additional ports available

III. DESIGN OVERVIEW

Clio is actuated in only a single degree of freedom, so while

relatively simple, operation throughout the water-column im-

poses a number of design challenges not usually encountered

on a typical AUV. Basic specifications appear in Table I.

Clio must avoid contaminating its samples and altering the

active biochemical pathways, for example, by introducing iron.

Eight years of development effort devoted to the SUPR multi-

sampler have led to a good understanding of acceptable mate-

rials for contact with sample water. Clio itself is constructed

almost entirely of non-ferrous materials, principally plastics

and aluminum. Titanium fasteners replace conventional steel

ones in high-strength joints. The high cost these fasteners

drove us toward a frame design requiring few fasteners.

Clio must quickly and efficiently execute its profiles. Clio is

designed to complete a nominal 16-station profile and return to

deck within 14 hrs, a time-line designed to be compatible with

the standardized wire-based sampling protocols developed

for the multi-national decadal GEOTRACES program.1 The

SUPRs aboard Clio employ the same pumps (McLane Labo-

ratories) used for conventional wire-based filtering. For typical

filter pore sizes these pumps require between 30 minutes and

1 hour of continuous pumping to collect a complete sample.

To complete a 6000 m dive, Clio must therefore spend the vast

majority of its dive-time actively sampling, and move rapidly

between sample depths. Clio must precisely maintain its depth

while sampling. The precision requirement (5 m) demands

closed-loop depth control, though not necessarily a particular

means of propulsion. Thrusters render the control problem

trivial—Clio maintains depth to within 5 cm while sampling.

Using thrusters, as opposed to a variable ballast system, means

Clio must expend energy continuously to hold depth. However,

pumping is energetically intensive, and therefore thrusting to

hold depth incurs only an incremental additional cost. While

this increases the required battery capacity, it also requires

no fundamental change to vehicle infrastructure already nec-

essary. But the most compelling reasons for preferring active

thrust over expendable or variable ballast systems have to do

with the logistical and maintenance implications.

Typical AUV systems designed for sea floor work use

expendable ascent/descent weight systems to execute rapid

descents, become approximately neutral at depth, and then

positively buoyant for ascent or in case of emergency. Clio

must operate throughout the water column, whereas a two-

weight descent/ascent system is effective for attaining neutral

buoyancy only at a single depth. An ascent/descent weight

system would enable Clio to transit the water column in one

direction “for free,” and/or to provide positive buoyancy in an

emergency. However, we found no inexpensive, non-ferrous

materials suitable for routine use as expendable ballasts.

Concrete, stone, etc., have specific gravities < 3 whereas

the most common expendable ballast material, steel, has a

specific gravity of about 8. Steel can be coated, e.g. with

polyurethane, but at extra cost. Dissolved lead (from leaded

gasoline) is a valuable tracer in the ocean, rendering lead

weights both expensive and a contaminant risk. More impor-

tantly, our experience with other deep-diving AUV systems

(ABE [6], Sentry, Nereus [7]) indicates that servicing drop-

weight systems, necessarily required after every dive, poses

a significant maintenance burden and incurs significant costs

associated with shipping and storing large quantities of ballast

material.

Nevertheless there are obvious benefits to minimizing the

energy required to hold depth. The energy required depends

strongly on Clio’s static ballast condition. We ballast Clio

to be positively buoyant at the surface. This ensures that it

will passively rise to the surface in the event of most system

failures. Like nearly all AUVs, Clio is less compressible than

seawater and therefore gains buoyancy as it descends. Where

1www.geotraces.org



Fig. 4. The apparatus used to directly study the stability of Clio’s hull form
and to measure selected hydrodynamic coefficients. The device consists of
a motor connected via zero-backlash cabling to the rotor plate and a shaft
passing through the strut that connects to a 1/4 scale model of the vehicle. The
motor is controlled in closed-loop to allow for modification of the effective
scale CB/CG separation, to set the static side-slip angle, and to measure the
hydrodynamic moment about the vertical axis. A mount (not shown) with
integrated load cell measures drag.

possible we chose materials having lower bulk moduli to

minimize this effect. A isopycnal hull like that on the Seaglider

[8], designed to match average seawater compressibility, is

a more sophisticated solution to the same problem, but less

suited to a flooded-hull vehicle like Clio where pressure

housings comprise only a small portion of the vehicle’s total

displacement. “Compressees” in the form of spring-backed

compensators, e.g. [9], or bulk materials with low bulk moduli

[10] strive to achieve a net vehicle compressibility similar to

seawater, and may be added to Clio in the future.

We chose Clio’s unique hull shape for several reasons:

to accommodate the form factor of the SUPRs, to keep the

samplers vertical throughout a dive, to avoid the need for a

cradle on deck, to enable rapid access to the samplers and to

prevent contamination by removing them to a clean room be-

tween dives, to ensure the vehicle fits into typical CTD-rosette

hangars and standard ISO shipping containers, and to achieve

reasonably low drag. Being symmetric about the horizontal

plane causes a destabilizing moment that scales quadratically

with speed. A deliberately large separation between center-

of-mass and center-of-buoyancy stabilize the vehicle, up to a

certain threshold speed.

IV. HYDRODYNAMICS

Clio must travel efficiently during both ascent and descent.

To achieve specifications it must transit 6000 m at a speed

above 0.75 m/s. Clio uses thrusters rather than expendable

ballast, and therefore hull drag detracts directly from battery

energy. To keep drag low in both directions we chose a hull

form symmetric about the horizontal plane. Potential theory

predicts that such a hull form is unstable—it will tend to

Fig. 5. The 1/4-scale Clio model mounted on the apparatus of Fig. 4, shown
at a side-slip angle of 15◦ . The model can be mounted with either the roll-
axis actuated (as shown) or the pitch axis. (The axes refer to the full-scale
vehicle.)

rotate such that its long axis is perpendicular to the direction

of motion. It would be possible to stabilize the vehicle during

descent by adding fins to the upper end of the vehicle, but these

would act to destabilize the vehicle during ascent, absent some

means of transferring them to the bottom of the vehicle or vice

versa. To avoid this complexity, we rely on the hydrostatic

restoring moment that results from the vertical separation

between the vehicle’s center of buoyancy (CB) and center

of mass (CG) to counteract the destabilizing hydrodynamic

moment. The hydrostatic stabilizing moment is invariant with

speed, whereas the destabilizing hydrodynamic moment scales

quadratically with speed. Clio is therefore stable only up to a

certain threshold speed, and that threshold speed must exceed

the specification. It is straightforward to predict a vehicle’s CB

and CG using computer aided design tools (CAD), whereas

predicting a vehicle’s hydrodynamic coefficients using com-

putational fluid dynamics (CFD) remains challenging. The

lack of empirical studies for a hull form of Clio’s unusual

shape led us to measure the key hydrodynamic coefficients

experimentally with a scale model.

To measure these parameters and to confirm stability di-

rectly we designed the apparatus shown in Fig. 4 along with

a 1/4-scale model of Clio (Fig. 5) and then performed a series

of runs in the University of Rhode Island tow tank. The model

was driven horizontally down the length of the flume at speeds

up to 3 m/s (0.75 m/s full-scale speed) while measuring drag

and moment about the axis parallel to the strut. We varied

angle of attack, α, up to 15◦. Drag was measured in order to

predict propulsion system energy consumption. The moment

was measured to determine the threshold speed as a function

of CB/CG separation. (On Clio there is no incentive to make

the CB/CG separation anything other than as large as possible,

but it cannot be arbitrarily large.) The moment was measured

about the vehicle’s geometric center (the CG was unknown at
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this point in the design process). Clio has a flooded hull. With

the entrained water included, the vehicle’s effective CG and

CB are both close to the geometric center. The magnitude

of the hydrostatic restoring moment is unaffected whether

entrained water is included or not. Therefore, stability about

the geometric center closely approximates stability about the

CG (i.e., self-propelled stability).

Drag data indicate a coefficient of drag referenced to frontal

area Cdo
≈ 0.3 that is approximately constant for small side-

slip angle |β| < 3◦ and the range Reynolds Numbers tested

2e5 < ReL < 6e5 (referenced to body length). Fig. 6 shows

the moment coefficient about the pitch and roll axes referenced

to body length cubed. This is the key stability parameter. The

plot indicates a destabilizing moment derivative dCm/dβ < 0
about both axes that varies approximately linearly with small

|β| < 15◦.

A stable ascent or descent requires a net negative moment

about the CG in response to an angular displacement from the

vertical. For a small angular displacement in roll δφ, the total

moment P (δφ) about the vehicle’s roll axis is

P (δφ) = Cm(δφ)L3q +mgzGBδφ , (1)

where L denotes the body length in the vertical axis, q denotes

the dynamic pressure associated with a constant vertical speed,

m denotes vehicle mass, g gravity, and zGB the vertical

CB/CG separation. A corresponding equation applies to pitch.

Taking derivative with respect to δφ yields the stability crite-

rion

mgzGB > −
δCm

δφ
qL3 . (2)

The quantity on the left is constant. The quantity on the right

scales quadratically with increasing speed; therefore while

increasing zGB always improves stability, the vehicle will

always be unstable at sufficiently high speed. The apparatus

allowed us to both predict this speed from the measurements of

Cm as well as to observe the onset of instability directly. The

proportional gain in the motor holding the model into the flow

replicates the action of zGB through an appropriate constant of

proportionality. Fig. 6 compares the predicted range of speeds

and zGB at which instability was observed versus predicted,

for both the roll and pitch axes. Eq. 2 yields the solid line

in the plots. Clio’s final design predicted a full scale CB/CG

separation of 0.15 m, suggesting a threshold speed of 0.75 m/s

to 1.0 m/s.

Our predictions were confirmed on the full-scale vehicle.

Fig. 7 shows a series of ascents and descents performed at

various constant thrusts. Above about 0.8 m/s the vehicle

begins to experience wild oscillations in pitch and roll and

a corresponding oscillation in depth rate. Below this threshold

speed, oscillations are present but an order of magnitude

smaller, and the depth rate is approximately constant.

V. COMPRESSIBILITY

Clio uses thrusters to transit the water column and to

hold depth. Any residual buoyancy incurs an energy penalty.

A residual positive buoyancy is necessary to assure vehicle

safety in case of propulsion system failure. These requirements

pose competing objectives. We manage the trade-off in the

conventional way, by maintaining a detailed weight and ballast

sheet, updating it as instruments are removed or installed, and

cross-checking/re-calibrating it against thrust data from dives.

Seawater is compressible and the ocean is stratified. These

two effects mean that in situ density increases with depth

and therefore a vehicle’s buoyancy typically changes with

depth. In the upper water column, above the thermocline,

temperature drives density variation; below the thermocline

bulk compression becomes dominant. Typical AUVs are 2-5

times less compressible than seawater [10] and gain buoy-

ancy with depth. For a vehicle of Clio’s size this range of

compressibilities corresponds to a range of 10 kg to 15 kg in

added buoyancy at 6000 m, a significant parasitic propulsion
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load. Where feasible Clio’s design uses materials with low

bulk moduli so as to keep the net bulk modulus of the vehicle

low. The large potential impact of compressibility on battery

sizing and vehicle endurance required a tight coupling between

mechanical design and simulation. A bespoke extension to our

CAD software generated a comprehensive list of parts, along

with their volumes, coefficients of thermal expansion, and bulk

moduli (or effective bulk modulus in the case of housings) that

a numerical simulation consumed and then used to simulate a

nominal mission. The simulation used a globally representative

profile of seawater temperature and in situ density [11]. In this

way we could rapidly adjust battery capacity, flotation and

other vehicle design elements.

Field trials in July 2017 afforded an opportunity to ex-

perimentally determine Clio’s effective bulk modulus and

coefficient of thermal expansion. We used the ship’s Conduc-

tivity Temperature and Depth (CTD) to measure a background

profile of temperature and (derived) in situ density and then

compared the thrust required to hold station at a series of

depths down to 2000 m. Clio’s thrusters were independently

calibrated during earlier dock trials so that the mapping

between commanded current and output bollard thrust was

known. The vehicle’s volume as a function of depth V (z) can

be determined from applied vertical thrust Z(z) according to

V (z) =
Z(z) +mg

gρ(z)
, (3)

where ρ(z) denotes in situ density and m denotes vehicle
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mass. Fig. 8 shows the ratio of vehicle volume at depth versus

volume at the surface. The vehicle’s volume decreases rapidly

in the upper water column due to thermal contraction and

then near-linearly due to compression below about 500 m. A

first-order model for vehicle volume as a function of ambient

temperature T (z) and pressure P (z) is

V (z) = Vo

(
1 + α(T (z)− To)−

1

κ
(P (z))

)
, (4)

where To and Vo denote the temperature and vehicle volume at

the surface, α denotes the vehicle’s net coefficient of thermal

expansion, and κ its net bulk modulus. A least squares fit to the

data yielded values of α = 9.4e− 5 K−1 and κ = 4.8e9 Pa.

Typical values for seawater are αsw = 1.5e − 4 K−1 and

κsw = 2.2e9 Pa. Clio is therefore 2.2 times less compressible

than seawater, at the low end of the typical range, but still

significant with respect to the energy penalty incurred on deep

dives. Simulations late in the design phase predicted a lower

bulk modulus of 2.5e9 Pa, much closer to seawater. The cause

of this discrepancy remains unclear. A dive to Clio’s full

rated depth, planned for 2019, will improve the estimate for

κ, which is presently sensitive to α and the rapid change in

temperature in the upper water column.

VI. FIELD RESULTS

Clio has dived 14 times over 4 cruises as of October 2018,

including field trials in July 2017. An additional 2 cruises

are scheduled through June 2019. With the exception of field

trials, all cruises to date have focused on seasonal variability in

the microbiome at the BATS (Bermuda Atlantic Time Series)

station (31◦40’N 64◦10’W).

Filter samples are Clio’s primary data product, the sci-

entific interpretation of which requires knowing the depth

of each sample and the quantity of water pumped through
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Fig. 9. Depth and pumped volume on clio011 versus time, showing also the associated activity of one SUPR unit.

Fig. 10. Global metaproteome of the upper 800 meters as collected on
the clio007 at the BATS station. Left: vertical profiles of several thousand
individual proteins isolated, extracted, and analyzed from samples taken from
the Clio AUV. Right: Total protein abundance extracted from microbial filters
showing enhanced biomass in the euphotic zone.

the filter (measured using a Seametrics S-series impeller-

type flow meter). Clio also measures profiles of temperature,

conductivity, chlorophyll fluorescence, and dissolved oxygen,

and can accommodate additional profiling sensors. These data

provide context for the filter samples. Fig. 9 shows a typical

dive, clio011, consisting of a short descent and purge of

the SUPR valves (“wobble”), then a descent to 1000 m

followed by sampling at progressively shallower depths. The

concentrations of thousands of proteins can be measured from

each filter (Fig. 10).

The primary objective of the BATS cruises is scientific ver-

ification of the data products against conventionally obtained

samples. From an engineering and operations perspective we

are striving to streamline dive planning, launch, recovery and

turn-around, with the objective of transitioning Clio to routine

operation by a single at-sea technician (exclusive of filter

processing). To date we have operated the vehicle successfully

with two engineers. Installation and removal of the SUPR filter

stacks can be accomplished less than 30 minutes before and

after diving, but the practicality of doing so depends strongly

on weather and other considerations. Other inter-dive vehicle

activities consist of charging and data processing. The primary

impediment to a further reduction in staffing is the maturity

of the software interface.

VII. CONCLUSION

Clio is a 6000 m rated vertical profiling AUV primarily

designed to carry Suspended-Particle Rosette (SUPR) filter

samplers. Logistical concenrs and a desire for operational

simplicity led to a positively-buoyant thruster-driven design

and an up/down symmetric hull with moderate drag. We

discussed the implications of these decisions, their role in

the design cycle including scale model testing and simulation,

and verification of our predictions in the field. Clio is now

operating in service of scientific oceanography.



Clio meets or exceeds the design specifications established

at the beginning of the project; however, opportunity exists

for improving performance and for further development, espe-

cially novel sampling strategies. Reducing the energy penalty

associated with increased buoyancy at depth, by the addition of

passive “compressees” [9], [10], would extend endurance and

reduce water-column disturbance caused by active thrusting

while sampling without the complexity of an active variable

ballast system. Differential thrust could be used to damp

roll oscillations in closed loop and thereby to increase Clio’s

threshold speed an operating envelope.

Clio is capable of acquiring samples difficult or impossible

to acquire using conventional wire-based techniques. It is

a nearly Lagrangian sampler, can hold depth an order of

magnitude more precisely than wire-based samplesm and

sample surface waters away from the contaminating influence

of a vessel. It carries an altimeter and putatively can sample

near the seafloor at fixed altitude rather than fixed depth.

Clio is designed with sample cleanliness in mind, but we

must characterize both contamination direct from the vehicle

and indirect from exposure to contaminants during shipping

and storage or time on deck between dives. Quantifying

and ameliorating these potential sources of contamination

will ultimately determine what kind of measurements can be

extracted from Clio samples. Perhaps the greatest potential for

innovation lies in adaptive sampling, e.g., to target discrete

samples in phytoplankton thin layers by searching for peaks

in continuous chlorophyll fluorimetry. Algorithms designed

for this purpose developed for other AUVs [12] are readily

adaptable to Clio.

Clio promises to lower the operational and financial barriers

to realizing global-scale “-omics” survey of the world’s oceans

by operating simultaneously and independently of wire-based

oceanographic sampling. Such knowledge, collected on a

global scale, and combined with the data from GEOTRACES,

and WOCE before it, will engender deeper understanding of

the linkages between life, chemistry, and physical processes

in the ocean.
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