112 research outputs found

    MALT1 Small Molecule Inhibitors Specifically Suppress ABC-DLBCL In Vitro and In Vivo

    Get PDF
    SummaryMALT1 cleavage activity is linked to the pathogenesis of activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL), a chemoresistant form of DLBCL. We developed a MALT1 activity assay and identified chemically diverse MALT1 inhibitors. A selected lead compound, MI-2, featured direct binding to MALT1 and suppression of its protease function. MI-2 concentrated within human ABC-DLBCL cells and irreversibly inhibited cleavage of MALT1 substrates. This was accompanied by NF-κB reporter activity suppression, c-REL nuclear localization inhibition, and NF-κB target gene downregulation. Most notably, MI-2 was nontoxic to mice, and displayed selective activity against ABC-DLBCL cell lines in vitro and xenotransplanted ABC-DLBCL tumors in vivo. The compound was also effective against primary human non-germinal center B cell-like DLBCLs ex vivo

    Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment

    Get PDF
    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses

    A Ubiquitin Ligase Complex Regulates Caspase Activation During Sperm Differentiation in Drosophila

    Get PDF
    In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3–dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3Testis), the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC) domain of Cul3Testis that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis–like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation

    Expression and Function of Ccbe1 in the Chick Early Cardiogenic Regions Are Required for Correct Heart Development

    Get PDF
    During the course of a differential screen to identify transcripts specific for chick heart/hemangioblast precursor cells, we have identified Ccbe1 (Collagen and calcium-binding EGF-like domain 1). While the importance of Ccbe1 for the development of the lymphatic system is now well demonstrated, its role in cardiac formation remained unknown. Here we show by whole-mount in situ hybridization analysis that cCcbe1 mRNA is initially detected in early cardiac progenitors of the two bilateral cardiogenic fields (HH4), and at later stages on the second heart field (HH9-18). Furthermore, cCcbe1 is expressed in multipotent and highly proliferative cardiac progenitors. We characterized the role of cCcbe1 during early cardiogenesis by performing functional studies. Upon morpholino-induced cCcbe1 knockdown, the chick embryos displayed heart malformations, which include aberrant fusion of the heart fields, leading to incomplete terminal differentiation of the cardiomyocytes. cCcbe1 overexpression also resulted in severe heart defects, including cardia bifida. Altogether, our data demonstrate that although cardiac progenitors cells are specified in cCcbe1 morphants, the migration and proliferation of cardiac precursors cells are impaired, suggesting that cCcbe1 is a key gene during early heart development.FCT [SFRH/BD/65628/2009, SFRH/BPD/86497/2012, SFRH/BPD/41081/2007]; F.C.T.B.I. fellowship [PTDC/SAU-BID/114902/ 2009]; FCT; Institute for Biotechnology Bioengineering (Centro Biomedicina Molecular e Celular (IBB/CBME), Laboratorio Associado (LA) in the frame of Project [PestOE/EQB/LA0023/2013]info:eu-repo/semantics/publishedVersio

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    Politics, 1641-1660

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Substrate mimics of bacterial Hsp70s inhibit chaperone function through distinct allosteric mechanisms

    No full text
    Here, we set up high-throughput multiprotein assays to screen a large collection (&gt;25K) of structurally diverse small molecules against the Mtb DnaK chaperone system including a J-protein and GrpE. We measure the level of ATP hydrolysis by this system as a proxy to detect small molecule-mediated modulation. Like others, we aimed to identify allosteric inhibitors that might affect DnaK function through distal site or cofactor binding, instead of ATP competitive inhibitors that might exhibit promiscuity against the plethora of cellular nucleotide binding proteins. In doing so, we identify several small molecules that affect the activity of the Mtb DnaK chaperone complex, and focus on two unique compounds that have been used as clinical drugs. Both of these molecules represent mimics of substrates that bind to the NBD or SBD of DnaK, but they lead to proposed conformational changes that inactive the protein. We show that one of these molecules has activity against mycobacterial cells that have compromised folding function. Our work contributes to a small but growing list of chemical scaffolds that have activity against protein chaperones, and strengthens our understanding of how to achieve specificity in bacterial DnaK targeting

    Scintillation proximity assays in high-throughput screening.

    No full text
    Scintillation proximity assays (SPAs) have become a powerful tool for high-throughput screening (HTS) because they can measure the activity and binding of very diverse classes of drug targets. By applying the basic principles of ligand-receptor binding and enzyme kinetics, it is possible to build a large variety of miniaturized, high-throughput assays and screen millions of compounds. SPAs are enabled by the diversity of radiolabeled molecules and affinity tags that are commercially available. These synthetic radiotracers allow for minimal disturbance of the natural binding interactions. This article will present a comprehensive review of the technique and provide detailed information on its applications related to HTS, highlighting the major uses and giving some suggestions for future research

    Statistical evaluation of a self-deconvoluting matrix strategy for high-throughput screening of the CXCR3 receptor.

    No full text
    In high-throughput screening (HTS), compounds can be tested in self-deconvoluting matrices (SDMs) of 10 compounds per well. The SDM setup is based upon a systematic mixing of compound samples such that each compound appears twice in the screening assay, in two independent mixtures. In order to test the quality of the SDM approach, we compared it with a standard single-compound screening approach. In a CXCR3 scintillation proximity assay, we performed five multiple screening trials of 26,400 compounds at a 10 microM screening concentration to estimate false positive and false negative rates in the compound population. No potent hits (<6.2 microM IC50) were missed in any screening method. Forty-eight percent of all actives were found in every screening trial independent of compound handling method. The SDM strategy had an average of 25 false positives and 15 false negatives as compared with an average of 34 false positives and 15 false negatives with a more conventional single-compound screening approach. Most of the variability resulted from day-to-day variation around the hit cutoff criterion, rather than from any particular screening technique. In the two most extreme examples, a compound with a 7.5 microM IC50 was missed in one out of two mixture trials, and a compound with a 6.2 microM IC50 was missed in one out of three single-compound trials. In the CXCR3 assay presented herein, the SDM screening method had better predictive value than the single-compound screening approach
    corecore