121 research outputs found

    Improving patient notification of solid abdominal viscera incidental findings with a standardized protocol

    Get PDF
    BACKGROUND: The increasing use of computed tomography (CT) scans in the evaluation of trauma patients has led to increased detection of incidental radiologic findings. Incidental findings (IFs) of the abdominal viscera are among the most commonly discovered lesions and can carry a risk of malignancy. Despite this, patient notification regarding these findings is often inadequate. METHODS: We identified patients who underwent abdominopelvic CTs as part of their trauma evaluation during a recent 1-year period (9/2011-8/2012). Patients with IFs of the kidneys, liver, adrenal glands, pancreas and/or ovaries had their charts reviewed for documentation of the lesion in their discharge paperwork or follow-up. A quality improvement project was initiated where patients with abdominal IFs were verbally informed of the finding, it was noted on their discharge summary and/or were referred to specialists for evaluation. Nine months after the implementation of the IF protocol, a second chart review was performed to determine if the rate of patient notification improved. RESULTS: Of 1,117 trauma patients undergoing abdominopelvic CT scans during the 21 month study period, 239 patients (21.4%) had 292 incidental abdominal findings. Renal lesions were the most common (146 patients, 13% of all patients) followed by hepatic (95/8.4%) and adrenal (38/3.4%) lesions. Pancreatic (10/0.9%) and ovarian lesions (3/0.3%) were uncommon. Post-IF protocol implementation patient notification regarding IFs improved by over 80% (32.4% vs. 17.7% pre-protocol, p = 0.02). CONCLUSION: IFs of the solid abdominal organs are common in trauma patients undergoing abdominopelvic CT scan. Patient notification regarding these lesions is often inadequate. A systematic approach to the documentation and evaluation of incidental radiologic findings can significantly improve the rate of patient notification

    Preclinical Testing of Erlotinib in a Transgenic Alveolar Rhabdomyosarcoma Mouse Model

    Get PDF
    Rhabdomyosarcoma is an aggressive childhood malignancy, accounting for more than 50% of all soft-tissue sarcomas in children. Even with extensive therapy, the survival rate among alveolar rhabdomyosarcoma patients with advanced disease is only 20%. The receptor tyrosine kinase Epidermal Growth Factor Receptor (EGFR) has been found to be expressed and activated in human rhabdomyosarcomas. In this study we have used a genetically engineered mouse model for alveolar rhabdomyosarcoma (ARMS) which faithfully recapitulates the human disease by activating the pathognomic Pax3:Fkhr fusion gene and inactivating p53 in the maturing myoblasts. We have demonstrated that tumors from our mouse model of alveolar rhabdomyosarcoma express EGFR at both the mRNA and protein levels. We then tested the EGFR inhibitor, Erlotinib, for its efficacy in this mouse model of alveolar rhabdomyosarcoma. Surprisingly, Erlotinib had no effect on tumor progression, yet mice treated with Erlotinib showed 10–20% loss of body weight. These results suggest that EGFR might not be an a priori monotherapy target in alveolar rhabdomyosarcoma

    Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data

    Get PDF
    Background Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments. Methods We assessed the effect of data processing steps on the alignment statistics and the functional enrichment analysis results of RNA- and ChIP-seq data. We compared differentially processed RNA-seq data with matching microarray data on the same patient samples to determine whether changes in pre-processing improved correlation between the two. We have developed a simple tool to remove low complexity regions, RepeatSoaker, available at https://github.com/mdozmorov/RepeatSoaker, and tested its effect on the alignment statistics and the results of the enrichment analyses. Results Both adapter trimming and duplicate removal moderately improved the strength of biological signals in RNA-seq and ChIP-seq data. Aggressive filtering of reads overlapping with low complexity regions, as defined by RepeatMasker, further improved the strength of biological signals, and the correlation between RNA-seq and microarray gene expression data. Conclusions Adapter trimming and duplicates removal, coupled with filtering out reads overlapping low complexity regions, is shown to increase the quality and reliability of detecting biological signals in RNA-seq and ChIP-seq data

    A holistic approach to understanding the desorption of phosphorus in soils

    Get PDF
    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the “DGT-induced fluxes in sediments” model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k–1) was 0.0046 h–1, and the desorption rate was 4.71 nmol l–1 s–1. While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH–EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Kepler-21b: A Rocky Planet Around a V = 8.25 Magnitude Star

    Get PDF
    HD 179070, aka Kepler-21, is a V = 8.25 F6IV star and the brightest exoplanet host discovered by Kepler. An early detailed analysis by Howell et al. (2012) of the first thirteen months (Q0 - Q5) of Kepler light curves revealed transits of a planetary companion, Kepler-21b, with a radius of about 1.60 ± 0.04 R⊕ and an orbital period of about 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2σ upper limit of 10 M⊕. Here we present results from the analysis of 82 new radial velocity observations of this system obtained with HARPS-N, together with the existing 14 HIRES data points. We detect the Doppler signal of Kepler-21b with a radial velocity semi-amplitude K = 2.00 ± 0.65 m s-1, which corresponds to a planetary mass of 5.1 ± 1.7 M⊕. We also measure an improved radius for the planet of 1.639 +0.019/-0.015 R⊕, in agreement with the radius reported by Howell et al. (2012). We conclude that Kepler-21b, with a density of 6.4 ± 2.1 g cm-3, belongs to the population of small, ≤6 M⊕ planets with iron and magnesium silicate interiors, which have lost the majority of their envelope volatiles via stellar winds or gravitational escape. The RV analysis presented in this paper serves as example of the type of analysis that will be necessary to confirm the masses of TESS small planet candidates.PostprintPeer reviewe

    Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability

    Get PDF
    Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Aboveground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P
    corecore