1,737 research outputs found
Recommended from our members
Immune factors preceding diagnosis of glioma: a Prostate Lung Colorectal Ovarian Cancer Screening Trial nested case-control study.
BackgroundEpidemiological studies of adult glioma have identified genetic and environmental risk factors, but much remains unclear. The aim of the current study was to evaluate anthropometric, disease-related, and prediagnostic immune-related factors for relationship with glioma risk.MethodsWe conducted a nested case-control study among the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. One hundred and twenty-four glioma cases were identified and each matched to four controls. Baseline characteristics were collected at enrollment and were evaluated for association with glioma status. Serum specimens were collected at yearly intervals and were analyzed for immune-related factors including TGF-β1, TNF-α, total IgE, and allergen-specific IgE. Immune factors were evaluated at baseline in a multivariate conditional logistic regression model, along with one additional model that incorporated the latest available measurement.ResultsA family history of glioma among first-degree relatives was associated with increased glioma risk (OR = 4.41, P = .002). In multivariate modeling of immune factors at baseline, increased respiratory allergen-specific IgE was inversely associated with glioma risk (OR for allergen-specific IgE > 0.35 PAU/L: 0.59, P = .03). A logistic regression model that incorporated the latest available measurements found a similar association for allergen-specific IgE (P = .005) and showed that elevated TGF-β1 was associated with increased glioma risk (P-value for trend <.0001).ConclusionThe results from this prospective prediagnostic study suggest that several immune-related factors are associated with glioma risk. The association observed for TGF-β1 when sampling closer to the time of diagnosis may reflect the nascent brain tumor's feedback on immune function
Modeling and Testing for Joint Association Using a Genetic Random Field Model
Substantial progress has been made in identifying single genetic variants
predisposing to common complex diseases. Nonetheless, the genetic etiology of
human diseases remains largely unknown. Human complex diseases are likely
influenced by the joint effect of a large number of genetic variants instead of
a single variant. The joint analysis of multiple genetic variants considering
linkage disequilibrium (LD) and potential interactions can further enhance the
discovery process, leading to the identification of new disease-susceptibility
genetic variants. Motivated by the recent development in spatial statistics, we
propose a new statistical model based on the random field theory, referred to
as a genetic random field model (GenRF), for joint association analysis with
the consideration of possible gene-gene interactions and LD. Using a
pseudo-likelihood approach, a GenRF test for the joint association of multiple
genetic variants is developed, which has the following advantages: 1.
considering complex interactions for improved performance; 2. natural dimension
reduction; 3. boosting power in the presence of LD; 4. computationally
efficient. Simulation studies are conducted under various scenarios. Compared
with a commonly adopted kernel machine approach, SKAT, GenRF shows overall
comparable performance and better performance in the presence of complex
interactions. The method is further illustrated by an application to the Dallas
Heart Study.Comment: 17 pages, 4 tables, the paper has been published on Biometric
BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies
Genome-wide association studies (GWAS) have discovered many loci associated with common disease and quantitative traits. However, most GWAS have not studied the gene–gene interactions (epistasis) that could be important in complex trait genetics. A major challenge in analysing epistasis in GWAS is the enormous computational demands of analysing billions of SNP combinations. Several methods have been developed recently to address this, some using computers equipped with particular graphical processing units, most restricted to binary disease traits and all poorly suited to general usage on the most widely used operating systems. We have developed the BiForce Toolbox to address the demand for high-throughput analysis of pairwise epistasis in GWAS of quantitative and disease traits across all commonly used computer systems. BiForce Toolbox is a stand-alone Java program that integrates bitwise computing with multithreaded parallelization and thus allows rapid full pairwise genome scans via a graphical user interface or the command line. Furthermore, BiForce Toolbox incorporates additional tests of interactions involving SNPs with significant marginal effects, potentially increasing the power of detection of epistasis. BiForce Toolbox is easy to use and has been applied in multiple studies of epistasis in large GWAS data sets, identifying interesting interaction signals and pathways
A novel approach to simulate gene-environment interactions in complex diseases
Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones.
Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful.
Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.
Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma
High throughput analysis of epistasis in genome-wide association studies with BiForce
Motivation: Gene–gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS. Results: We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case–control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits. Availability and implementation: The software is free and can be downloaded from http://bioinfo.utu.fi/BiForce/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online
Genetic association analysis of N-methyl-d-aspartate receptor subunit gene GRIN2B and clinical response to clozapine
OBJECTIVE: Approximately 30% of patients with schizophrenia fail to respond to antipsychotic therapy and are classified as having treatment-resistant schizophrenia. Clozapine is the most efficacious drug for treatment-resistant schizophrenia and may deliver superior therapeutic effects partly by modulating glutamate neurotransmission. Response to clozapine is highly variable and may depend on genetic factors as indicated by twin studies. We investigated eight polymorphisms in the N-methyl-d-aspartate glutamate receptor subunit gene GRIN2B with response to clozapine. METHODS: GRIN2B variants were genotyped using standard TaqMan procedures in 175 European patients with schizophrenia deemed resistant or intolerant to treatment. Response was assessed using change in Brief Psychiatric Rating Scale scores following six months of clozapine therapy. Categorical and continuous response was assessed using chi-squared test and analysis of covariance, respectively. RESULTS: No associations were observed between the variants and response to clozapine. A-allele carriers of rs1072388 responded marginally better to clozapine therapy than GG-homozygotes; however, the difference was not statistically significant (p = 0.067, uncorrected). CONCLUSIONS: Our findings do not support a role for these GRIN2B variants in altering response to clozapine in our sample. Investigation of additional glutamate variants in clozapine response is warranted. Copyright © 2016 John Wiley & Sons, Ltd
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
- …
