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METHODOLOGY ARTICLE Open Access

A novel approach to simulate gene-environment
interactions in complex diseases
Roberto Amato1,2*†, Michele Pinelli1,3†, Daniel D’Andrea1, Gennaro Miele1,2,4, Mario Nicodemi1,4,5,
Giancarlo Raiconi1,6, Sergio Cocozza1,3

Abstract

Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They
represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart
disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and
environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One
reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors
and their interactions in these data sets. An improvement in this direction would lead to a better understanding
and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different
statistical methods against data sets where the underlying phenomenon is completely known and fully
controllable, for example simulated ones.

Results: We present a mathematical approach that models gene-environment interactions. By this method it is
possible to generate simulated populations having gene-environment interactions of any form, involving any
number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we
implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed
to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The
main aim has been to allow the input of population characteristics by using standard epidemiological measures
and to implement constraints to make the simulator behaviour biologically meaningful.

Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of
complex disease where gene-environment interactions influence the disease risk. The user has full control of the main
characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based
approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes
the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel
statistical methods or for the evaluation of the statistical power when designing a study.

Background
Complex Diseases (CD) are caused by variations in mul-
tiple loci interacting with each other and with environ-
mental factors [1]. Many complex traits, such as cancer,
heart disease, obesity, diabetes, and many common psy-
chiatric and neurological conditions, have large preva-
lence and mortality among human diseases [2,3].

The concept of Gene-Environment interaction (GxE) is
theoretically central in CD [4]. It is widely accepted that
GxE must be considered in CD to avoid a serious under-
estimation of the disease risk and inconsistencies of repli-
cation among different studies. Furthermore, taking into
account the GxE could focus medical intervention by
identifying sub-groups of individuals who are more sus-
ceptible to specific environmental exposures [5]. How-
ever, there are very few examples of well described GxE
in scientific literature [6]. Instead, a large amount of
information has been collected about both single genetic
and environmental risk factors individually taken, because
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the majority of the studies examined the main effect of
single factors instead of examining the interactions [6-8].
In our opinion, one reason for such a failure could be

the statistical approach. Several statistical methods
aimed at the identification of factors’ interactions have
been described and used to identify GxE, such as Logis-
tic Regression [9] and Multifactor Dimensionality
Reduction (MDR) [10,11]. However, the performances
of these methods can be influenced by many variables
such as the sample size, the number of involved factors,
the type of interaction, the model of inheritance,
the allelic frequencies, the distributions of the environ-
mental factors, and the relative strength of the different
factors affecting the risk of disease. Unfortunately, only
some of these characteristics are known in few real
populations, and therefore there is not enough informa-
tion to assess the performances of statistical methods.
In this scenario, as an alternative approach, one can

imagine using simulated populations in order to assess
the statistical power of different methods. In population
genetics, although there are several genetic data simula-
tors (for a complete list see [12]), the vast majority have
been developed to study the evolution of genomic
sequences across generations (as coalescent [13] and
forward-time methods [14]; for a review see [15]).
Beside these tools, many others that simulate pedigrees
also have been developed. They help the linkage analysis
in familiar pedigrees and, hence, are useful mainly in
mapping loci involved in mendelian diseases [16-22].
Regarding the modelling of the genetics role in com-

mon multifactorial complex diseases, to date, few mod-
els have been developed. The “GWAsimulator” was
developed mainly to simulate pattern of linkage disequi-
librium (LD) among SNPs in genome-wide studies [23].
GWAsimulator does not consider any role of the envir-
onment on the risk of disease. On the contrary, the
modelling of environmental factors effect on the risk of
disease is a very large field of epidemiology [24]. How-
ever, it is generally accepted that the effect of an envir-
onmental exposure on the disease risk can follow a
logistic function. Indeed, the most used statistical tool
for environmental factor is the logistic regression.
Among the others, two software, SIMLA [17] and

QUANTO [25] are specifically designed for data sets
where the disease risk is a function of interactions between
genetic and environmental factors. In both models, the dis-
ease risk is based on a logistic function, where covariates
are genetic factors, environmental factors and interactions.
In SIMLA the data of three generations of families are
simulated and the disease risk is a function of up to two
genetic and two environmental factors. The user can input
the relative risk associated to single factors and also combi-
nations of any two factors. QUANTO is a tool designed to
estimate the power of matched case-control, case-sib, or

case-parent studies and does not actually produce simu-
lated data sets. In QUANTO the disease risk is a function
of a one gene-one environment interaction. Moreover, in
QUANTO the user can input the risks associated to the
environmental factor, to the genetic factor and to their
interaction. SIMLA and QUANTO are valuable tools for
the modelling of complex diseases, because they explicitly
consider the role of GxE in disease risk. However, some
limitations still exist. For example, in SIMLA it is not
straightforward to simulate data of unrelated individuals as
those of case-control data sets. Furthermore, the user
inputs the risk associated to each factor and to each inter-
action of factors. In this way, after the building up of the
logistic model the marginal risks that result for each single
factor are not the same as those input previously. This lat-
ter can be a limitation when simulating a real dataset
where only marginal risks of single factors are known, and
nothing known about their relationships. Finally, these
tools can describe the interactions between genetic and
environmental factors only in a linear way and they are not
easily extensible to more complex interactions.
We propose a novel method, the Multi-Logistic Model,

that mathematically describes gene-environment interac-
tions that are similar to those found in case-control stu-
dies. By this method it is possible to model GxE in any
form, involving any number of genetic and environmen-
tal factors, also allowing gene-gene interactions, as epista-
sis. A simple version has been implemented in the Gene-
Environment iNteraction Simulator (GENS), designed to
simulate case-control data sets where a one gene-one
environment interaction influences the disease risk.
Moreover, to make easier the simulation of data nearer
to those from previous studies or literature we used com-
mon epidemiological measures as input. This also makes
the tool friendlier to the biomedical community.

Results
The Multi-Logistic Model for gene-environment
interaction
The mathematical approach behind the simulation of
the disease risk involving GxE is based on a system of
logistic relationships. We called this approach Multi-
Logistic Model (MLM) and specifically designed it
to describe disease risk in data sets that simulate
case-control samples. In the simulated data sets, each
individual has G genetic factors and is exposed to E
environmental factors. Genetic factors are denoted by
gi

a
a
where a = 1, ..., G. The genetic factors are biallelic

Single Nucleotide Polymorphisms which result in three
diploid genotypes, namely the first homozygote (AA,
ia = 1), the heterozygote (Aa, ia = 2) and the second
homozygote (aa, ia = 3). Genetic frequencies for
each factor are denoted by PG( gi

a
a
) where ∀a

P gG
i
a

i aa
( )

, ,
 1

1 2 3 . The environmental variables,
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instead, are denoted by x j
b

b
, where b = 1, ..., E and jb is

an index which runs over the possible discretized values
of the variable b. They are characterized by exposure
probabilities denoted by PE( x j

b
b
) (where again ∀b

P xE
j
b

j bb
( )  1 ). It is worth noticing we preferred to

present the mathematical description concerning a dis-
crete environmental variable only in order to keep it
simpler. However, the model is more general and can be
referred to as both continuous or discrete variables.
Let us consider a particular individual characterized by

(E + G) values of x j
b

b
and gi

a
a
. In general the disease

risk R is a function of all of them. The disease risk for
such an individual ( g xi

a
j
b

a b
, ) is defined by the condi-

tioned probability

R g x P g xi
a

j
b

i
a

j
b

a b a b
( , ) ( | , ) affected (1)

where P (affected| g xi
a

j
b

a b
, ) is the probability of the

individual to be affected. In our model we assume a
logistic expression for R:

R g x xi
a

j
a

i i i i
b

j
b

b

E

a b G G b
( , ) exp ,.., ,...,  








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
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1

 












1

(2)

where  i iG1 ,..., and  i i
b

G1 ,..., are free parameters deter-
mined by the genetic factors and governing the shape of
the function. Figure 1 shows an example of the model
in case of 2 genetic and 1 environmental factor
interacting.
Gene-Environment iNteraction Simulator
We implemented the MLM in the Gene-Environment
iNteraction Simulator (GENS). For the sake of simplicity
we describe, in this phase, a simple interaction between
one genetic and one environmental factor even though
we continue to describe an individual by assigning to
him a (E + G)-tuple of characteristics. As a consequence
of this choice, the MLM gets a simpler form. In particu-
lar, we can drop the indexes a and b in the expression
of disease risk (2). Thus, by denoting with gi the geno-
type of the chosen gene and with xj the exposure level
of the environmental factor involved, we have

R g X R g x xi
a

j
b

i j i i ja b
( , ) ( , ) [ exp{ }] .    1 1  (3)

In other words, the MLM reduces to three logistic
functions, one for each genotype.
It is possible to think of ai as the basal genetic disease

risk in individuals with that genotype. The greater is ai

the stronger is the disease risk, independently of the
contribution of the environmental factor. In particular,
for vanishing ai there is no basal risk and the risk is
totally ascribed to the environmental exposure (xj).
Analogously, bi represents the coefficient associated to

the environmental exposure, thus the greater is bi the
greater risk is associated to an increasement in the
environmental exposure. In other words, bi models, for
genotype i, the susceptibility to the environmental factor
exposure. Consequently, for vanishing bi the environ-
mental exposure has no effect on the disease risk.
To describe populations by standard epidemiological

measures, we implied the relative risk as the measure of
the role of a genetic factor on the disease risk. In parti-
cular, by defining the Total Risk (T R) in a specific gen-
otype i as

TR P x xi
E

j i i j

j

    ( )[ exp{ }]1 1  (4)

(which holds under the hypothesis of independence
among different environmental variables) one can define
the Relative Risk RRkl ≡ T Rk/T Rl.
We take one homozygote as a reference point (say

AA, denoted with i = 1), the other homozygote (say aa,
i = 3) has an equal or larger risk than the first one, and
the heterozygote (Aa, i = 2) has a risk ranging within
the two homozygotes. Furthermore, we assume the rela-
tive risk of heterozygote to be within those of the two
homozygotes (1 ≤ RR21 ≤ RR31). In particular, if the het-
erozygote risk is the same of the first homozygote a
recessive effect is simulated. If the heterozygote has the
same risk of the second homozygote a dominant effect
is simulated. Other situations are called co-dominant.
Formally, the relative risk of heterozygote RR21 is

defined as

RR RR W
21 31 ( ) (5)

where the W allows to model various inheritance
effects: recessive (W = 0), dominant (W = 1), and co-
dominant (0 < RR21 < 1) [17].
Marginal risk of the environmental factor is input as

the odds ratio of the increase of one unit in the level of
exposure. This value is then transformed in the coeffi-
cients bi of the multi-logistic model. Anyway, at most
only one bi is provided by the user, leaving the tool
deriving other values to respect all the constraints.
Type of GxE interaction
To describe the GxE in biological understandable
terms, we consider a genetic only and an environ-
mental only model and two models of interactions
that involve both genetic and environmental factors
(Table 1 and Figure 2). The first two models could be
useful as reference.
In the first model, the Genetic Model (GM), each indi-

vidual carrying a genotype has the same disease risk
regardless of the environmental exposure. This situation
is modelled by giving a vanishing effect to the
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Figure 1 Multi-logistic model applied to a two genetic-one environmental factors condition. On the y-axis is reported the disease risk (R)
and on the x-axis is reported the level of exposure of the environmental factor. The relationship is modelled by the Eq. 2. For each combination
of genetic factors there are different ai and bi that models the relationship between environmental exposure and disease risk.

Table 1 Relationships among the coefficients of the Multi-Logistic Model and the type of interaction.

Interaction model Constraints

Genetic Model a1 ≤ a2 ≤ a3 and b1 = b2 = b3 = 0

Environmental Model a1 = a2 = a3 and b1 = b2 = b3 = b ≠ 0

Gene Environment interaction Model a1 = a2 = a3 and b1 ≤ b2 ≤ b3
Additive Model a1 ≤ a2 ≤ a3 and b1 = b2 = b3 = b ≠ 0

Type of gene-environment interactions are expressed as constraints among coefficients of the Multi-Logistic Model. This approach allows to specify the type
of interaction to simulate in a simple manner. Another interesting consequence is that for each type of interaction only a subset of coefficients needs to be
specified.
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environmental variable, namely fixing all the bi equal to
zero. In the second model, the Environmental Model
(EM), the risk is due to the environmental exposure
only. This situation is modelled by imposing ai and bi
equal across the genotypes with a non-vanishing bi. This
choice provides the same risk independently of the car-
ried genotype.
The third model simulates the scenario where the gene

modules response to environment (Gene Environment
interaction Model - GEM). In this case the genetics do
not directly affect the disease risk, but modules the
response to the environmental exposure. In other words,
some genotypes are more prone than others to develop

the disease if exposed to the same environmental level.
In this interaction model all the ai are equal (no direct
genetic effect) while bi are different. The last is the
Additive Model (AM), where genetic and the environ-
ment influence the risk directly, independently and
additively. Moreover the environmental exposure has
the same effect in all the genotypes (equal bi). For
this model, there are no complex interactions between
the genetics and the environmental exposure. However,
the risk is the sum of that due to the genetic predisposi-
tion and that due to the environmental role. Of course
the user can create further types of GxE by freely
imposing ai and bi.

Figure 2 Type of GxE interactions modeled by KAPS. On the y-axis is reported the disease risk (R) and on the x-axis is reported the level of
exposure of the environmental factor. The relationship is modelled by the Eq. 3. For each combination of genetic factors there are different ai

and bi that follows the specific constraints (Table 1). In the Environmental Model (EM), the disease risk is dependent only by the environmental
exposure level, thus the environment-risk relationship is the same across genotype (same slope and no shift). In the Genetic Model (GM), the
disease risk depends on genetic factor only, thus the environment has no role on the disease risk (the curve is flat) while the risk is different
across genotypes (height of the curve). In the third model (AM), the disease risk depends on both genetic and environmental factors; the
relationship between environmental exposure and disease risk is the same in each genotype (same slope), but in each genotype there is a
different basal risk (shift). In the fourth model (GEM), the genetic factor influences the relationship between environmental exposure and disease
risk (slope). However, there is no different basal genetic risk (no shift).
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Knowledge-Aided Parametrization System
To translate the population parameters into coefficients
of the MLM, we implemented the Knowledge-Aided
Parametrization System (KAPS). This module derives
the values of ai and bi starting from genotype frequen-
cies, relative risk and model of inheritance of the genetic
factor, distribution and odds ratio of the environmental
factor, type of GxE and the proportion of affected indi-
viduals in the sample (m).
The key issue is that the overall disease frequency in

the population m is given by

P g P x x mG
i

i

E
j i i j

j

( ) ( )[ exp{ }]   













1 1  (6)

Dividing Eq. 6 by T R1 and by means of some alge-
braic manipulation, it is straightforward to show that

P E x j
x j

m

PG g PG g RR PG g RRj

( )

exp{ } ( ) ( ) ( )1 1 1 1 2 21 3 31 


   
(7)

In a similar way it is possible to derive the expressions
for the marginal risks of the other genotypes. By
numerically solving this set of three equations (one for
each T Ri) it is possible to obtain ai and bi coefficients
that match at most the user’s requests.
Algorithm and Implementation
The simulation procedure is divided into several steps
(Figure 3). First of all, the genotypes of G genetic factors
and the levels of exposure of E environmental factors
are assigned to the N individuals.
Consequently, the sample population characteristics

(Table 2) are input by the user and hence the coefficients
of the MLM are calculated. Finally, the disease risk and
the disease status are assigned to each individual.
Concerning the genetic factors, the user can provide

the allelic frequencies or allow the simulator to ran-
domly select them (with a uniform distribution between
0.1 and 0.9). In both cases, the Hardy-Weinberg’s law is
used for the calculation of the frequencies of the geno-
types. Afterwards, by means of a Monte Carlo method,
the genotype of each genetic factor is randomly assigned
to each individual according to the genotypic frequen-
cies. Similarly for the environmental factors, the user
can use a distribution function, among a set of prede-
fined ones, or provide an empirical distribution PE( x j

b
b
).

Again by a Monte Carlo process the exposures of envir-
onmental factors are assigned according to distribution
functions.
After the assignment of the genetic and environmental

factors to individuals, the next step is the assignment of
the phenotype. For this process the system computes
the coefficients of the MLM in order to create the

relationship between population characteristics, type of
GxE interaction, and disease risk. The actual computa-
tion of the coefficients is performed by KAPS that, by
means of Eq. 7 and similar ones for T R2 and T R3,
solves numerically the resulting system of three equa-
tions and returns a1, a2, a3, b1, b2 and b3.
The disease risk (0 ≤ R(gi, xj) ≤ 1) is assigned by the

MLM (Eq. 3) by using the parameters previously identi-
fied. In particular, for each individual his genotype i
establishes the coefficients ai and bi computed by
KAPS, while the exposure level is the value of the cov-
ariate xj. The last step is to assign a disease status
(affected/not affected) to the individuals. Again by a
Monte Carlo process, the system generates a random
number with uniform distribution in [0, 1] and assigns
to the individual the status 1 (affected) if this number is
less then his risk R(gi, xj), or 0 (not affected) if
otherwise.
An implementation of GENS is freely available on

Sourceforge https://sourceforge.net/projects/gensim as a
set of Matlab 7.0 scripts that can be freely modified to
address different requirements (different risk function,
multiloci interaction, etc.).

Discussion and Conclusions
In this article we present a novel mathematical approach
to model GxE in complex diseases. This approach is
based on a Multi-Logistic Model (MLM) and it is speci-
fically tailored to model disease risk in data set that
simulates case-control samples. We implemented this
method in Gene-Environment iNteraction Simulator
(GENS), a tool designed to yield case-control samples
for GxE. These tools could be useful to generate simu-
lated data sets in order to assess the performances of
statistical methods.
The necessity to provide simulated populations is due

to the difficulty of obtaining real populations in which
enough parameters are known to be related to the phe-
notype. Furthermore, during the design of a statistical
study, simulated populations can also be used to esti-
mate the expected statistical power when assuming dif-
ferent types of GxE [26]. We focused on inputing
characteristics extracted by real populations (such as
allelic frequencies, environmental factor distributions,
risk given by genetic and environmental factors, etc.). In
this way it is also easy to replicate real populations and
evaluate the change of statistical power due to changes
of the parameters as the sample size (N) and the disease
frequency (m) and the type of GxE and etc.
The key idea underlying the MLM is the modelling of

the disease risk in each combination of genetic factors
(genotypes) as a different mathematical function of the
environmental exposures (Figure 1). In this way it is
possible to model any type of interaction between
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Figure 3 Flowchart of GENS. Starting from desired population characteristics, GENS assigns to each individual the genotypes of genetic factors
and the exposure levels of environmental factors. Beside, the module KAPS uses population characteristics to compute coefficients of the Multi-
Logistic Model. Thus, on the basis of individual characteristics and Multi-Logistic Model, the individual disease risk is computed. The last step is
the assignment of disease status to individuals (affected/not affected) according to their disease risks.

Table 2 Parameters required by GENS. Description of parameters required by GENS in order to produce a simulated
case-control sample. These parameters are translated into coefficients for the Multi-Logistic Model by the Knowledge-
Aided Parametrization System.

Parameter Description

N Number of individuals

G Number of genetic factors

E Number of environmental factors

PG( gi
a
a
) Frequency of genotype ia of genetic factor ga (a = 1, ..., G)

PE( x j
b

b
) Exposure probabilities, where b = 1, ..., E and jb is an index which runs over the possible discretized values of the variable b

m Overall disease frequency in the population

TypeOfGxe Type of GxE: Genetic (GM), Environmental (EM), Gene Environment interaction (GEM, Additive (AM)

RR31 Relative risk of high-risk homozygote

W Model of inheritance: recessive (W = 0), dominant (W = 1), co-dominant (0 <W < 1)

b Odds ratio of the disease risk of an individual exposed to xj with respect to one exposed to xj + 1

Amato et al. BMC Bioinformatics 2010, 11:8
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genetic and environmental factors, also complex and
non-linear ones. We based our approach on the logistic
function. This function is widely used in epidemiological
studies and has several advantages. It follows the
Weber-Fechner law and as the value of the risk factor
increases it naturally ranges from 0 to 1 [27]. Moreover,
the coefficients of the covariates correspond to the loga-
rithm of the odds ratio due to a one-unit increase (in
this case the environmental factor) [27]. In particular, in
order to calculate the disease risk, the genetic factors of
individuals sets coefficients of the function while the
environmental factors assign a value to its covariates.
We implemented the MLM in the Gene-Environment

iNteraction Simulator, a GxE simulator for case-control
studies. The intended audience of GENS is the biomedi-
cal community, thus the main efforts have been to
describe populations by standard epidemiological mea-
sures, to implement constraints to make the simulator
behaviour biologically meaningful, and to define the
GxE in biological understandable terms. In theory, the
MLM can model interactions of multi-genetic and
multi-environmental factors. However, for the sake of
simplicity we focused on an interaction between one
genetic and one environmental factor. In this way it is
much easier to use as input standard epidemiological
measures. Nevertheless, even in this simple situation,
the handling of the interaction is not straightforward.
Furthermore, in simulated populations besides the
involved factors there are other ones that act as noisy
background, as frequently occurs in real data sets.
Even in this simple scenario, modelling the desired

characteristics of a population can be very difficult,
except for some particular and simple cases, mainly
because it is necessary to provide several coefficients to
the mathematical model. However, having several coeffi-
cients with a difficult interpretation is a common pitfall
when modelling complex interactions. Therefore, to
overcome this limitation we have implemented the
Knowledge-Aided Parametrization Subsystem (KAPS).
This system exploits a set of reasonable biological con-
straints to reduce the complexity of the system. First of
all, concerning the genetic factors, we imposed that the
risk assigned to the heterozygote falls between the two
homozygotes. Secondly, we adopted a qualitative
description of the GxE. In particular, each type of GxE
can be modelled as a set of equality and inequality of ai

and bi among genotypes. We pre-determined two types
of GxE, an additive (AM) and a modulative type (GEM).
The user has only to select which type of GxE must be
simulated, without providing additional information. In
this way, we can reduce the complexity of the system
and, therefore, reduce the degrees of freedom of the
mathematical model. Finally, KAPS solves the system of
equations to derive coefficients in order to comply with

both biological constraints and population characteris-
tics imposed by the user. As a consequence, to simulate
a population only classical epidemiological parameters
have to be provided (Table 2). However, the user can
simulate any kind of interaction by the freedom of
inputing all the coefficients of the MLM, and even to
substitute the logistic expression with a different one.
In population genetics, data simulation has been

mainly used to study population evolution, linkage dise-
quilibrium, and pedigree of mendelian disease [16-22].
Although some very interesting tools have been specifi-
cally designed for complex diseases [17,25], some limita-
tions still exist. For example they do not directly
produce case-control data sets. GENS is specifically
designed to produce case-control data sets as close as
possible to real ones in a simple manner. In addition,
differently from a naive logistic model, the MLM allows
modelling non-liner phenomena such as epistasis.
One of the shortcomings of GENS compared to other

tools could be the limitation of one gene-one environ-
ment interactions. However, this choice has been made
because it is easier to describe and understand the joint
and single role of the factors. It should be noted that
this limitation accounts mainly to the present imple-
mentation, in particular to KAPS. In fact, the multi-
logistic model can be easily used to simulate multi
genetic-multi environmental factor interactions by
applying Eq. 2 and providing enough coefficients. The
number of environmental factors are increased by add-
ing additional covariates in the functions to consider
their effects. Instead, the number of genetic factors
involved in the disease risk is increased by defining
additional logistic functions in the multi-logistic model.
For example, with the software a file is provided con-
taining parameters of a non-linear interaction among
three genetic and two environmental factors. Further-
more, the multi-logistic model can be extended to use
different functions for each combination of genetic
factors.
As our approach is widely based on a Monte Carlo

process, the system naturally takes into account the ran-
domness present in any real data sets obeying to prob-
abilistic laws. In other words, data sets created with the
same characteristic results to be randomly different.
In conclusion, by the multi-logistic model and GENS

it is possible to simulate case-control samples of com-
plex diseases where gene-environment interactions influ-
ence the disease risk. The user has full control of the
main characteristics of the simulated populations and
the Monte Carlo process allows random variability. A
knowledge-based approach reduces the complexity of
the mathematical model by using reasonable biological
constraints and makes the simulation more understand-
able in biological terms. Simulated data sets can be used

Amato et al. BMC Bioinformatics 2010, 11:8
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for the assessment of novel statistical methods or for the
evaluation of statistical power when designing a study.
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