129 research outputs found

    Theoretical Evaluation of Relaxation Times of Some Aromatic Esters Using Different Methods

    Get PDF

    Soil-site suitability evaluation for mustard in calcareous soils of Girnar toposequence in Southern Saurashtra region of Gujarat

    Get PDF
    Abstract The five representative pedons were evaluated for their suitability to Indian mustard [Brassica juncea (L.) Czern & Coss.] in the soils of different land slope of Girnar toposequence of Southern Saurashtra region of Gujarat. The soils of pedon P 3 belong to Typic Haplustert are highly suitable for Indian mustard cultivation, whereas the soils of pedon P 1 belong to Lithic Ustorthents, pedon P 2 belong to Lithic Haplustepts, pedon P 4 belong to Typic Haplustepts and pedon P 5 belong to Typic Ustifluvents are currently not suitable for Indian mustard cultivation. Topography, shallow soil depth, high CaCO 3 , drainage, salinity and sodicity are the major limitations in most soils of Girnar toposequence of Southern Saurashtra. Results showed that the suitability classes can be improved if the correctable limitations (soil fertility characteristics) are altered through soil amelioration measures

    Identifying the Sources of Ferromagnetism in Sol-Gel Synthesized Zn\u3csub\u3e1-x\u3c/sub\u3eCo\u3csub\u3ex\u3c/sub\u3eO (0 ≤ x ≤ 0.10) Nanoparticles

    Get PDF
    We have carefully investigated the structural, optical and electronic properties and related them with the magnetism of sol-gel synthesized Zn1-xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Samples with x ≤ 0.05 were pure and free of spurious phases, whereas ZnCo2O4 was identified as the impurity phase for samples with x ≥ 0.08. Samples with x \u3c 0.05 were found to be true solid solutions with only high spin Co2+ ions into ZnO structure, whereas sample with x = 0.05, exhibited the presence of high spin Co2+ and low spin Co3+. For the impurity-free samples we found that as Co concentration increases, a and c lattice parameters and Zn–O bond length parallel to the c-axis decrease, the band gap drastically decreases, and the average grain size and distortion degree increases. In all samples there are isolated Co2+ ions that do not interact magnetically at room temperature, bringing about the observed paramagnetic signal, which increases with increasing Co concentration. M vs T curves suggest that some of these disordered Co2+ ions in Zn1−xCoxO are antiferromagnetically coupled. Moreover, we also found that the intensity of the main EPR peak associated to Co2+ varies with the nominal Co content in a similar manner as the saturation magnetizations and coercive fields do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of Co2+. Bound magnetic polaron model is insufficient to explain the Room temperature ferromagnetism in these Co doped ZnO samples and the charge transfer model seems not influence considerably the FM properties of Zn1-xCoxO nanoparticles. The FM behavior may be originated from a combination of several factors such as the interaction of high spin Co2+ ions, the formation of defect levels close to the valence band edge and grain boundaries effects

    Repurposing — a ray of hope in tackling extensively drug resistance in tuberculosis

    Get PDF
    Tuberculosis (TB) remains a serious concern more than two decades on from when the World Health Organization declared it a global health emergency. The alarming rise of antibiotic resistance in Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with novel mechanism(s) of action is thus of paramount importance to tackle drug resistance. The development of novel chemical entities requires more than 10 years of research, requiring high-risk investment to become commercially available. Repurposing pre-existing drugs offers a solution to circumvent this mammoth investment in time and funds. In this context, several drugs with known safety and toxicity profiles have been evaluated against the TB pathogen and found to be efficacious against its different physiological states. As the endogenous targets of these drugs in the TB bacillus are most likely to be novel, there is minimal chance of cross-resistance with front-line anti-TB drugs. Also, reports that some of these drugs may potentially have multiple targets means that the possibility of the development of resistance against them is minimal. Thus repurposing existing molecules offers immense promise to tackle extensively drug-resistant TB infections

    Pregnancy vitamin D supplementation and childhood bone mass at age 4 years : findings from the Maternal Vitamin D Osteoporosis Study (MAVIDOS) randomized controlled trial

    Get PDF
    In the Maternal Vitamin D Osteoporosis Study (MAVIDOS) randomized trial, vitamin D supplementation in pregnancy did not lead to greater neonatal bone mass across the trial as a whole, but, in a prespecified secondary analysis by season of birth, led to greater neonatal bone mass among winter-born babies. Demonstrating persistence of this effect into childhood would increase confidence in a long-term benefit of this intervention. We investigated whether antenatal vitamin D supplementation increases offspring bone mineralization in early childhood in a prespecified, single-center follow-up of a double-blinded, multicenter, randomized controlled clinical trial based in the UK (MAVIDOS). A total of 1123 women in early pregnancy with a baseline 25-hydroxyvitamin D level 25–100 nmol/L from three research centers (2008–2014) were randomized to 1000 IU/d cholecalciferol or matched placebo from 14 weeks of gestation to delivery. Offspring born at the Southampton, UK research center were assessed at age 4 years (2013–2018). Anthropometry and dual-energy X-ray absorptiometry (DXA) were performed (yielding whole body less head [WBLH] bone mineral content [BMC], areal bone mineral density [aBMD], bone area [BA], and body composition). Of 723 children, 564 (78.0%) children attended the 4-year visit, 452 of whom had a useable DXA. Maternal vitamin D supplementation led to greater WBLH aBMD in the children compared with placebo (mean [95% confidence interval {CI}]: supplemented group: 0.477 (95% CI, 0.472–0.481) g/cm2; placebo group: 0.470 (95% CI, 0.466–0.475) g/cm2, p = 0.048). Associations were consistent for BMC and lean mass, and in age- and sex-adjusted models. Effects were observed across the whole cohort irrespective of season of birth. Maternal-child interactions were observed, with a greater effect size among children with low milk intake and low levels of physical activity. Child weight, height, and body mass index (BMI) were similar by maternal randomization group. These findings suggest a sustained beneficial effect of maternal vitamin D supplementation in pregnancy on offspring aBMD at age 4 years, but will require replication in other trials

    Extent of non-publication in cohorts of studies approved by research ethics committees or included in trial registries

    Get PDF
    BACKGROUND: The synthesis of published research in systematic reviews is essential when providing evidence to inform clinical and health policy decision-making. However, the validity of systematic reviews is threatened if journal publications represent a biased selection of all studies that have been conducted (dissemination bias). To investigate the extent of dissemination bias we conducted a systematic review that determined the proportion of studies published as peer-reviewed journal articles and investigated factors associated with full publication in cohorts of studies (i) approved by research ethics committees (RECs) or (ii) included in trial registries. METHODS AND FINDINGS: Four bibliographic databases were searched for methodological research projects (MRPs) without limitations for publication year, language or study location. The searches were supplemented by handsearching the references of included MRPs. We estimated the proportion of studies published using prediction intervals (PI) and a random effects meta-analysis. Pooled odds ratios (OR) were used to express associations between study characteristics and journal publication. Seventeen MRPs (23 publications) evaluated cohorts of studies approved by RECs; the proportion of published studies had a PI between 22% and 72% and the weighted pooled proportion when combining estimates would be 46.2% (95% CI 40.2%-52.4%, I2 = 94.4%). Twenty-two MRPs (22 publications) evaluated cohorts of studies included in trial registries; the PI of the proportion published ranged from 13% to 90% and the weighted pooled proportion would be 54.2% (95% CI 42.0%-65.9%, I2 = 98.9%). REC-approved studies with statistically significant results (compared with those without statistically significant results) were more likely to be published (pooled OR 2.8; 95% CI 2.2-3.5). Phase-III trials were also more likely to be published than phase II trials (pooled OR 2.0; 95% CI 1.6-2.5). The probability of publication within two years after study completion ranged from 7% to 30%. CONCLUSIONS: A substantial part of the studies approved by RECs or included in trial registries remains unpublished. Due to the large heterogeneity a prediction of the publication probability for a future study is very uncertain. Non-publication of research is not a random process, e.g., it is associated with the direction of study findings. Our findings suggest that the dissemination of research findings is biased

    The lure of postwar London:networks of people, print and organisations

    Get PDF

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore