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ABSTRACT 

We have carefully investigated the structural, optical and electronic properties and related 

them with the magnetism of sol-gel synthesized Zn1-xCoxO (0 ≤ x ≤ 0.10) nanoparticles. 

Samples with x ≤ 0.05 were pure and free of spurious phases, whereas ZnCo2O4 was 

identified as the impurity phase for samples with x ≥ 0.08. Samples with x < 0.05 were 

found to be true solid solutions with only high spin Co2+ ions into ZnO structure, whereas 

sample with x = 0.05, exhibited the presence of high spin Co2+ and low spin Co3+. For the 

impurity-free samples we found that as Co concentration increases, a and c lattice 

parameters and Zn–O bond length parallel to the c-axis decrease, the band gap drastically 

decreases, and the average grain size and distortion degree increases. In all samples there 

are isolated Co2+ ions that do not interact magnetically at room temperature, bringing about 

the observed paramagnetic signal, which increases with increasing Co concentration. M vs 

T curves suggest that some of these disordered Co2+ ions in Zn1−xCoxO are 

antiferromagnetically coupled. Moreover, we also found that the intensity of the main EPR 

peak associated to Co2+ varies with the nominal Co content in a similar manner as the 

saturation magnetizations and coercive fields do. These results point out that the 

ferromagnetism in these samples should directly be correlated with the presence of Co2+. 

Bound magnetic polaron model is insufficient to explain the Room temperature 

ferromagnetism in these Co doped ZnO samples and the charge transfer model seems not 

influence considerably the FM properties of Zn1-xCoxO nanoparticles. The FM behavior 

may be originated from a combination of several factors such as the interaction of high spin 

Co2+ ions, the formation of defect levels close to the valence band edge and grain 

boundaries effects. 
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1. INTRODUCTION 

ZnO is a semiconducting material, which has a direct wide-band gap (Eg~ 3.3 eV) at room 

temperature (RT) with a large exciton binding energy of 60 meV.[1] ZnO is attracting 

attention because of its multiple applications such as light-emitting diode, transparent 

conductor oxide, varistor, surface acoustic wave device, piezoelectric transducer, chemical 

gas sensor, biosensor and as window material for display and solar cells. [2] It is well 

known that the electrical and optical properties of ZnO can be tuned by modifying its 

electronic structure via extrinsic doping with selective elements. Transition metal (TM) 

doping in ZnO nanostructures has been proposed to develop dilute magnetic semiconductor 

(DMS) which will make them attractive for new nanoelectronic and spintronics 

applications.[3] These DMS materials have attracted much attention as promising 

functional materials because of the possibility of manipulating, in a controllable way, 

charge and spin degree of freedom of free carriers in a single substance.[4] These materials 

must exhibit an intrinsic ferromagnetism at RT or above arising from the doped matrix. To 

satisfy such system, the foreign atoms should be distributed the most homogeneous manner 

as possible in the crystalline structure of the host semiconductor. The role of Co ions on the 

magnetism in this TM doped ZnO system has been widely explored both theoretically and 

experimentally with poor agreement in the reported results. In relation with the theoretical 

studies Lee and Cheng[5] found that the spontaneous magnetization is not possible in 

intrinsic Co doped ZnO, that the ferromagnetic (FM) coupling is short ranged and that a 

high concentration of both Co ions and electron carriers are needed to achieve 

 
 



 
 

ferromagnetism. On the other hand, the theoretical studies by Spaldin[6] and Gopal and 

Spaldin[7] resulted in that the energy difference between the antiferromagnetic (AFM) and 

FM couplings was very small. Therefore paramagnetic (PM) behavior was predicted in the 

absence of free carriers, but when holes were introduced by creating Zn vacancies, the FM 

state was then stabilized. The influence of Co concentration on the magnetic interactions is 

also not clear. While some groups reported room temperature ferromagnetism for 25 at.% 

and lower concentrations (≤ 15 at.%) of Co, other groups reported the absence of FM 

behavior.[3] Now, regarding the experimental investigations, Kittilstved and Gamelin[8] 

and Schwartz et al[9] have studied Co2+ doped ZnO thin films and evidenced chemical 

activation of long-range FM coupling mediated by shallow donor electrons. Lawes et 

al.[10] reported absence of ferromagnetism, but dominant AFM interaction, down to 2 K in 

bulk Zn1-xCoxO with 0.02 ≤x ≤ 0.15. Mesaros et al.[11] prepared Zn1-xCoxO (x = 0.05, 0.10, 

and 0.15) nanoparticles using a wet-chemical synthesis route, and from their temperature 

dependence of the EPR integral intensity, a FM behavior was revealed for the samples. 

However, a possible origin for this magnetic interaction was not provided. Fu et al.[12] 

prepared Co doped ZnO nanomaterials by using a hydrothermal method, and discussed that 

the observed ferromagnetism originates probably from the Co3+ enrichment and the 

coexistence of Co2+/Co3+on the particle surface, which may lead to the super-exchange or a 

double-exchange mechanism between those ions. Gandhi et al.[13] synthesized by a co-

precipitation method Co doped ZnO nanoparticles and reported that the donor defects, such 

as oxygen vacancies and zinc interstitials, were found to be the main reasons for the 

observed room temperature ferromagnetism (RTFM). On the other hand, Acosta-Humánez 

et al.[14] studied using EPR some Co doped ZnO nanoparticles prepared by a sol-gel 

 
 



 
 

method. The authors reported that the ferromagnetism of the materials is governed by FM 

coupling among cobalt ions, but a possible microscopic mechanism is not offered. Now, 

Hays et al.[15] studied sol gel-synthesized Zn1−xCoxO (0 ≤x ≤ 0.12) nanoparticles, and 

found a PM behavior with increasing AFM interactions as x increased to 0.10. They also 

reported a weak FM behavior for the sample with x = 0.12, and proposed that this high Co 

concentration and appropriate oxygen stoichiometry may be needed to achieve adequate 

FM interaction between the Co2+ ions. Kumar et al.[16] investigated sol-gel synthesized 

Zn1-xCoxO (0 ≤x ≤ 0.04) nanoparticles and reported RTFM in the samples which increases 

with increasing Co concentration. They suggested that the joint effects of the intrinsic 

exchange interactions arising from oxygen vacancy assisted bound magnetic polarons and 

the grain boundary effects were responsible for the RTFM in this system. Tahir et al.[17] 

prepared Co doped ZnO nanorods and found that surface defects such as oxygen vacancies 

are likely a source of RTFM. They mentioned that oxygen vacancies are likely to 

congregate at low-energy (101) and (100) surfaces, instead of inside the bulk.  

 

Clearly, from this short controversial literature review, it is noticed that more investigations 

are still required. In this paper, we carefully characterize the crystallographic, vibrational, 

optical and magnetic properties of Zn1-xCoxO (0 ≤x ≤ 0.10) nanoparticles prepared by a sol-

gel method. The main goals are to: (i) provide information about the solubility limit of Co 

dopant ions in ZnO lattice, (ii) search for the oxidation and spin states of Co ions, (iii) 

discern the participation of Co in the RTFM signal, (iv) infer about the preferred location of 

the Co (Co2+ and/or Co3+) ions in the ZnO lattice, and (v) to contribute to the understanding 

of the role of cobalt ions on the magnetic properties of Co doped ZnO.  

 
 



 
 

2. EXPERIMENTAL DETAILS 

Zn1−xCoxO (0.0 ≤ x ≤ 0.10) nanopowders were prepared by the citrate precursor method 

based on the modified Pechini process.[18] Required amounts of Zn(NO3)2·6H2O, 

Co(NO3)2·6H2O, citric acid (CA), ethylene glycol (EG), ammonia solution and deionized 

water were used for the preparation of the starting sol. The black powder precursors 

resultants after the polyesterification reaction were annealed in a tubular furnace at 550 °C 

(heating rate: 5 °C/min) in air atmosphere for 1 and 3 h. To obtain insight into possible Co 

impurity phases which might be formed under these synthesis conditions, Co3O4 was also 

prepared following identical synthesis procedures. These fine powders of the as-obtained 

products were characterized by X-ray diffraction (XRD), fourier transform infrared 

spectroscopy (FTIR), optical absorption measurements, X-ray photoelectron spectroscopy 

(XPS), electron paramagnetic resonance (EPR) and variable temperature magnetic 

measurements. Detailed experimental section and characterization studies were carried out 

following procedures as described previously in references [19] and [20]. 

 

3. RESULTS 

3.1 X-ray Diffraction: Figure 1 presents the XRD refined patterns of Zn1-xCoxO samples 

annealed for 1 h along with that of Co3O4 sample prepared as reference. The hexagonal 

würtzite ZnO crystal structure was discerned as the only phase in the Zn1−xCoxO 

nanopowders with x in the range of 0.0 ≤ x ≤ 0.05, without the appearance of any extra 

peak. However, additional weak peaks located at 59.3o and 65.1o were observed in the XRD 

patterns with higher Co content (x ≥ 0.08). These peaks were more clearly noticed when the 

y-axis is plotted in logarithmic scale and matched well either with diffraction (511) and 

 
 



 
 

(440) planes of Co3O4 and/or ZnCo2O4. Although, it is difficult to distinguish between 

Co3O4 and ZnCo2O4 using XRD due to their equivalent spinel structures with nearly 

identical lattice constants (a= 8.088 Å), Co3O4 has been reported as the primary foreign 

phase in Co doped ZnO system.[11], [21]–[23] In view of this, we have fitted these XRD 

patterns assuming cobalt oxide as the secondary phase, with positional occupancies of (x, y, 

z) for Co-1 at (0.1250, 0.1250, 0.1250), Co-2 at (0.500, 0.5000, 0.500) and O at (0.2631, 

0.2631, 0.2631), but good results were not obtained. Then, we performed a second attempt 

including ZnCo2O4 phase, with positional occupancies of (x, y, z) for Zn at (0, 0, 0), Co at 

(0.625, 0.625, 0.625) and O at (0.3881, 0.3881, 0.3881), improving statically the fitting (χ2 

and Bragg R- factor for secondary phase). The result is that this phase accounts for 0.5 and 

0.9 wt. % in the XRD patterns of x= 0.08 and 0.1 samples, respectively (indicated by 

orange vertical bars in the fit). From the magnified regions of the XRD patterns, showed in 

top panel at the right side of the Figure 1, can be noted that for x ≤ 0.05, with increasing Co 

concentration, the XRD peak positions of Co doped ZnO samples are shifted towards 

higher diffraction angles and then for x > 0.05 are shifted to lower angles with further rise 

in the doping. The lattice parameters for all samples, annealed for 1 h, are displayed in left 

part of Figure 2. The a and c lattice parameters of ZnO as well as the cell volume gradually 

decrease with the increase in doping concentration and tend to have a minimum at doping 

level of 5 % and then increase with further rise in the doping [see panel (a) in left part of 

Figure 2], while parameter L[24] (Zn–O bond length along the c direction) follows the 

same trend [see panel (b) in left part of Figure 2)]. Interestingly, the average crystallite size 

(Dv) increases with the increase of Co concentration [see panel (b) in left part of Figure 2]. 

This result suggests that Co ions in ZnO structure could encourage crystallite growth, 

 
 



 
 

speeding up further growth of ZnO grains. Similar changes have been observed by other 

authors.[16], [25]It can be seen from panel (c) in left part of Figure 2 that the R parameter 

[26] increases and the c/a ratio decreases as x increases to 0.05, and above this nominal 

percentage a definite trend is not observed, which could be related with the formation of 

ZnCo2O4 phase on further doping of Co above 5 %. In a tetrahedral environment and high 

spin state, the ionic radii of Co2+ and Zn2+ are 0.58 and 0.60 Å, respectively. Then, it is 

expected that the lattice parameters tend to decrease slightly with increasing Co 

concentration for a solid solution Zn1-xCoxO as observed here (maximum Δa/a andΔc/c of 

9*10-4 and 2*10-3 respectively). Thus, the lattice parameters calculated from the XRD data 

indicate that the solubility limit of Co ions in the ZnO wurzite structure is lower than 8 at. 

% doping, indicating that at least 5% of the Zn2+ sites in ZnO lattice can be replaced 

successfully by the Co ions. On further Co doping above x = 0.05, segregation of, more 

probably, ZnCo2O4 occurs.  

 

On the other hand, XRD patterns of Co doped ZnO nanoparticles annealed for 3 h (data not 

shown) displayed similar diffractions peaks as those observed for the samples annealed for 

1 h, but in this case, besides the peaks located at 59.3o and 65.1o, two additional peaks 

located at ~36.8 o and ~44.4 o were observed in the XRD patterns of the 8 and 10 at. % of 

Co doped samples, when the y-axis was plotted in logarithmic scale. The fitting improved 

considerably by including the ZnCo2O4 phase instead of Co3O4, corroborating again the 

former compound as the spurious phase in these two set of samples. The fitting showed 

similar a and c lattice parameters and slightly higher Dv values in comparison to these for 

samples annealed for 1 h as shown in the right part of Figure 2. Additionally, from this 

 
 



 
 

Figure, it can be inferred that in this set of samples the solubility limit of Co ions in the 

ZnO wurzite structure is also lower than 8 % doping.  

 

It is worth mentioning that the Williamson-Hall plot [27] did not show linearity neither in 

undoped nor in Co doped ZnO samples by contrast, scattered points were observed, which 

could indicate that this preparation method gives rise to non-homogeneous particle shape 

and size distributions.  

 

3.2 Fourier transformed infrared spectroscopy: Figure 3 shows the FTIR spectra in the 

wavenumber range of 400-4000 cm-1 for Zn1−xCoxO with x = 0, 0.01, 0.03 and 0.05 

annealed for 1 h. The intense band centered at around 450 cm-1 is assigned to antisymmetric 

stretching vibration of O-Zn-O bonds, which also confirms the wurtzite structure.[28] All 

spectra exhibit two very weak peaks located at ~2850 and 2925 cm-1 due to C-H bond 

bending and stretching, respectively and two weak bands at 1390 and 1630 cm-1 attributed 

to the antisymmetric and symmetric C=O stretching modes, commonly associated with the 

carboxylate functional group, possibly originating from the fragments of the citrate 

precursor. It is worth mentioning that these bands are not considered as contaminations of 

the nanoparticles, rather they point out to the presence of absorbed species on the surface of 

nanopowders that could influence the properties of ZnO that depends primarily on the 

surface structure.[29] The intense and broad absorption in the range of 3100-3700 cm-1 is 

due to the stretching vibration of hydroxyl groups attached on the surface of nanocrystalline 

powders, indicating the existence of water absorbed on the surface of ZnO grains. This 

possibly could be attributed to the polarity of ZnO. Water dissociation often is favored at 

ZnO oxide surfaces, leaving OH- groups and hydrogen ions (H+) ions, where the stacking of 

 
 



 
 

Zn2+ ( ) plane ions tends to bind the hydroxide and the stacking of O2- ( ) plane 

ions tends to under-coordinated with the hydrogen, due to the electrostatically instability of 

these planes.[30] From Figure 3, it can be observed that the intensity of OH-, C-H and C=O 

stretching modes, with respect to Zn-O bands, decrease with Co doping. OH-group is 

considered a potential n-type defect in ZnO. Then, these results could suggest that intrinsic 

n-type defects may be suppressed with increment of Co content. Additionally is observed 

that with increasing Co content from x = 0.01 to 0.03 the intensity ratio of OH- to Zn-O 

stretching modes increases and then decreases when x reaches 0.05. 

 

3.3 Optical absorption: Optical absorption spectroscopy is considered a versatile tool to 

reveal electronic transitions when Co2+ ions are incorporated into ZnO lattice substituting 

Zn2+ at tetrahedral sites of the ZnO wurtzite structure and for studying the effect of Co 

doping concentration on the band gap of ZnO. RT optical absorption spectra of undoped 

and Co doped ZnO nanopowders, annealed for 1 h at different Co concentrations as well as 

Co3O4 sample prepared under the same conditions are shown in Figure 4 (a). The 

introduction of Co ions into ZnO lattice lead clearly to the appearance of three well defined 

additional absorption peaks as compared with the spectrum of undoped ZnO. These peaks 

located around 567, 610 and 655 nm are related to d-d transitions of Co2+ involving crystal 

field levels in a tetrahedral crystal symmetry and can be ascribed to the (F) → 2E(G), 

4A2(F) → 4T1(P), and 4A2(F) → 2A1(G) transitions, respectively, where A, E and T are 

generally designations of intermediate energy bands.[17], [31], [32] These results support 

the fact that high spin tetrahedrally coordinated (3d7, S=3/2) Co2+ ions are substituting at 

the Zn2+ sites in the ZnO structure. From this Figure 4 (a) it is evident that the relative 

 
 



 
 

intensity of the absorption bands (area under curve) between 525 and 725 nm do increase 

with increasing Co concentration, indicating higher absorption by the Co2+ ions 

incorporated in ZnO. To probe further into the details of differences among the samples, we 

have differentiated the absorbance with respect to the wavelength and the results are 

depicted in Figure 4 (b). Besides the strong absorption peak centered at ~380 nm, which 

arises from ZnO at the band edge, and the peaks related to d-d transitions of Co2+ ions, 

there are two additional humps located at ~420 nm and ~510 nm in Co doped ZnO samples, 

this latter is evident in Zn1−xCoxO samples with x ≥ 0.05. As x increases from 0 to 0.05, the 

peak at 380 nm sharply decreases and suddenly disappears at x = 0.03. On the other hand, 

the relative intensity of the peak located at 420 nm increases and is shifted to higher 

wavelengths with increasing x up to x = 0.05 and then it remains almost constant onwards. 

Regarding to the broad peak located at ~510 nm, this does not change the position with 

increasing Co2+ ions, but weakly increases its intensity. Let us now briefly discuss the 

origin of these two additional humps. Patra et.al [33] have proposed that the band located at 

425 nm in the spectrum of Co doped ZnO can be assigned to the presence of Co3+ ions 

tetrahedrally coordinated with oxygen corresponding to 5E to 5T2 transition. However, this 

interpretation should be taken with care because according to XPS and EPR results 

(presented below) the presence of Co3+ is only detected in Zn1-xCoxO samples when x 

reaches 0.05. On the other hand, Schwartz et. al [9] in Co doped ZnO nanocrystals have 

observed a band close to the absorption band edge which has been related as one of the 

spin-forbidden Co2+ ligand-field charge transfer (CT). Similar observations were found by 

Shi et. al in Co doped ZnO nanorods. [23] Therefore, the broad peak located at 425 nm has 

been commonly assigned to sub-band gap ligand to metal charge-transfer (LMCT) in which 

the Co2+ acts as the CT acceptor and the valence band serves as the CT donor. Thus, Co2+ 

 
 



 
 

rich zone below band gap can promote ligand field CT and semiconductor band-to-band 

transitions. Now, the shoulder at 510 nm has been assigned to the 4T1g(F) → 4T1g(P) and 

4T1g(F) → 4A2g ligand-field transitions of pseudo-octahedral Co2+ ions.[9], [21] Taking 

into account XPS, EPR and XRD results, these pseudo-octahedral Co2+ ions, present in x = 

0.01 and 0.03, could be more easily converted into pseudo-octahedral Co3+ ions when x 

reaches 0.05 and with further increment of Co doping, the additional broadening of 510 nm 

peak could indicate the formation of the spinel structure of ZnCo2O4 as secondary phase. 

The inset in Figure 4 (a) shows the band gap (Eg) variation, obtained following the 

Kubelka-Munk rule [34] as a function of nominal Co content (red solid spheres). The 

Co3O4 sample gave two Eg values, 1.61 and 2.22 eV, similar to those reported in the 

literature and which are lower than the Eg observed in all the Co doped ZnO samples.[35] 

From inset of Figure 4(a) it can be seen that the band gap decreases with increasing Co 

concentration, indicating the red shift of the band gap as observed by Elilarassi and 

Chandrasekaran [31] and Hays et.al [15] Our results are also in close agreement to those 

reported by Qiu et.al [36] They have observed that the decrease of the band gap in Zn1-

xCoxO nanonorods with 0 ≤ x ≤ 0.1 follows the relationship ΔEg = 0.54(e-x/0.03 -1) eV where 

x is Co2+ concentration. As shown by the blue solid triangles in the inset of Figure 4 (a), the 

decrease in the band gap with the increase in Co concentration follows well this trend. The 

abnormal narrow band gap energies found by Qiu et.al [36] were indicated to originate 

from s,p-d exchange interactions that are proportional to the square of lattice volume. In 

this work we have not observed a direct correlation between Eg and the variation of the 

lattice parameters or cell volumes in Co doped ZnO samples. Then, this gradual decrease in 

the band gap for Zn1−xCoxO samples, with the increase of x may be mainly related to the 

 
 



 
 

stronger exchange interactions between the localized d electrons of the Co ions substituting 

for Zn2+ ions and the s and p electrons of the host band of ZnO.[37], [38] The strong s,p–d 

hybridization ion probably lowers the bottom of the conduction band, while heightening the 

top of the valence band resulting in a band gap narrowing. 

 

Optical absorption spectra and derivative absorbance of Zn1−xCoxO (0 ≤ x ≤ 0.1) 

nanoparticles annealed for 3 h showed similar results as those found for the samples 

annealed for 1 h [(see Figures 5 (a) and 5 (b)], except that the broad peak located at ~510 

nm is more evident at x = 0.03. In comparison to the samples annealed for 1 h, those 

annealed for 3 h exhibited slightly smaller band gaps of 3.22, 3.04, 2.86, 2.77, 2.69 and 2.6 

eV for x = 0, 0.01, 0.03, 0.05, 0.08, and 0.10, respectively, and follows the same trend in 

the relationship ΔEg=0.54(e-x/0.03 -1), except for the last doping concentration. It is worth 

mentioning that the areas under the curves of the absorption bands between 525 and 725 

nm in Figure 5 (a) increase as x increases to 0.05 and then decrease with further rise in the 

doping, indicating higher Co3+ content for x ≥ 0.08 in these samples annealed for 3 h.  

 

As mentioned above, these band gap values are smaller than those for the samples annealed 

for 1 h, although the latter samples have smaller crystallite sizes compared to the former 

ones (3 h annealed samples). These results can be due to the fact that the structural changes, 

caused by the dopant incorporation and the prolonged annealing time, have a dominant role 

in the observed changes of the band gaps. 

 

 
 



 
 

3.4 X-Ray Photoelectron Spectroscopy: Figure 6 (a) shows full wide-scan X-ray 

photoelectron spectra of Zn1-xCoxO with x = 0, 0.01, 0.03, and 0.05 annealed for 1 h. All of 

the peaks in undoped ZnO can be only ascribed to Zn, O, and C along with their auger 

peaks and no magnetic impurity within the detection limit was observed, meanwhile in Co 

doped ZnO nanoparticles, additionally to these peaks, Co element was clearly evidenced as 

labeled in the Figure. The Zn 2p3/2 core level data of Zn1-xCoxO samples with 0.01 ≤ x ≤ 

0.05 are displayed in Figure 6 (b). All the spectra were deconvoluted using a single and 

symmetric signal located around 1021.3 eV and no significant changes in the chemical shift 

in comparison to undoped ZnO sample were observed [(see the inset in Figure 6 (b)]. The 

slight change in the binding energies (BE) of Zn 2p3/2 peak for these samples compared to 

that of bulk ZnO (1021.8 eV) [39] may be due to the nanometric size of these powders. The 

observed BE values indicates that Zn atoms retain the bivalent state in tetrahedral sites 

surrounded by O2- ions. The intensity and relative area under the Zn 2p3/2 peak 

progressively decreases upon increasing the Co doping, confirming that the Co2+ ions 

incorporate at the Zn2+ site. From the survey spectra similar results were observed when the 

relative areas under Zn L3M4,5M4,5 (490-505 eV) Auger peak and 3p core region were 

plotted against x. Figure 6 (c) shows the high-resolution XPS of O 1s core level spectra of 

Zn1-xCoxO samples with x = 0.01, 0.03 and 0.05 along with that of Co3O4 sample. The 

broad and asymmetric shape of this signal was deconvoluted into two components 

indicating the presence of two different oxygen bonded species. The first peak with lower 

BE centered at ~530.2 eV (O 1s-1) is attributed to O2- ions in the hexagonal wurzite ZnO 

structure which are bonded to Zn2+ and substitutional Co2+ atoms in tetrahedral sites, 

located mainly in the core region. The second BE peak (531.2-531.5 eV, O 1s-2) can be 

 
 



 
 

associated to weakly bound –OH bonds located at the surface of ZnO nanoparticles, as 

observed by FTIR. Changes in this latter component may be related to changes in the 

concentration of oxygen vacancies and/or defects on the surface of ZnO nanoparticles 

and/or oxygen-deficient regions within the matrix of ZnO.[40]–[42] It is worth mentioning 

that Co doped ZnO samples did not show chemical shift in the BE in comparison to 

undoped ZnO sample. With increasing Co doping concentration from x = 0.01 to 0.03, the 

intensity of the O 1s-1peak decreases, and then increases when x reaches 0.05. On the other 

hand the FWHM of O 1s-2 peak slightly increases, but its relative area slightly decrease 

from x = 0.01 to 0.05. It is worth mentioning that the ratio of the areas of the O 1s-1to the 

O1s-2 peaks decreases with increasing x from 0 to 0.03 and then increases for x=0.05. 

These observations could probably suggest that exists a maximum of oxygen deficient 

regions within the ZnO matrix at x = 0.03. These results may also indicate that the 

distribution of oxygen vacancies and defects on the surface of Co doped ZnO nanoparticles 

do not vary significantly as Co content increases. Regarding the reference sample, the O1s-

1 peak in Co3O4 at 529.5 eV, can be assigned to oxygen ions in their respective lattice sites, 

while the peak located at 532.5 eV (O 1s-3) in Co3O4 may be due to -CO3 surface 

contamination.[43] From these results and as is observed in Figure 6 (c), it is clear that the 

presence of O1s-1 and O1s-2 peaks in the Co doped ZnO samples highlight the difference 

in the chemical environment of the oxygen ions. 

 

Figure 6 (d) shows high resolution XPS scans of the Co 2p core electron regions of the Zn1-

xCoxO (0.01 ≤ x ≤ 0.05) samples annealed for 1 h and also the spectrum of Co3O4, which is 

included as reference. The Co 2p core-electron spectra of Zn1-xCoxO with x = 0.01 and 0.03 

 
 



 
 

were deconvoluted into two components. The first component lies in the range of 780.9-

781.0 eV with ΔS of 15.6-15.8 eV, whereas the second component that appears at 786.0-

786.2 eV is associated with shake-up satellite peaks (SS). Note that the spin-orbit splitting 

(ΔS) values of these Co ions are much higher than those for metallic Co (15.1 eV) or CoO 

(15.2 eV), but they are close to Co(OH)2 (15.9 eV)[44] and to Co3O4 (15.8 eV for Co2+ 

component). This observation, along with the presence of the strong SS around 5.2 eV of 

the 2p core level confirms that the valence state of Co ions in the ZnO structures are mainly 

2+ and of high spin and that they are substituting Zn2+ at the tetrahedral site surrounded by 

O2− ions.[45] On the other hand, in the spectrum of Zn0.95Co0.05O sample, the introduction 

of two additional components was necessary to improve considerably the deconvolution. 

These two new components with main line of 779.7 eV and ΔS of 15.2 eV and the small SS 

located at 790.1 eV can be associated to Co3+ ions.[46] Although, small differences in the 

BE and ΔS values for Co3+ component in Zn0.95Co0.05O in comparison to those for the 

reference sample (779.3eV and ΔS of 15.1 eV) were observed, the XPS technique is 

insufficient to differentiate between Co3+ ions in wurzite structure and Co3+ in Co3O4 or 

ZnCo2O4, due to the overlapping of these Co3+components in XPS spectra. From Figure 6 

(d) can be seen that the strong SS of the 2p core level increase with x from 0.03 to 0.05, 

which imply that the electronic state of Co2+ ions is largely in high spin arrangement, 

resembling that of CoO rather than that of Co3O4 or ZnCo2O4, which can also be deduced 

from the lack of SS in the latter compounds. In order to confirm if any secondary phase is 

present in the Zn0.95Co0.05O sample, we have recorded XRD patterns with extended 

accumulation time enhancing the detection limit considerably (data not shown). This 

pattern did not reveal any phase other than ZnO, even when plotted in logarithmic scale. 

Additionally, careful analysis of the spectra for Zn1-xCoxO (0.01 < x < 0.05) did not show 

 
 



 
 

any noticeable change in the peak positions of Zn 2p and O 1s core level upon increasing 

the Co content, ruling out the presence of any impurity phase[19]. According to the 

Shannon ionic radii Table, Co3+ exists in octahedral environments and not in tetrahedral 

ones, then, it is possible to assume that these Co3+ ions probably are occupying interstitial 

and/or superficial (where the presence of oxygen vacancies and/or defects is higher) sites in 

ZnO grains, instead of forming any secondary phase. It is noted that relative area under O1-

s2 peak remains almost unchanged with increasing Co doping and that oxygen deficient 

region within the ZnO matrix decreases in Zn0.95Co0.05O sample. On the other hand, the BE 

of Co3+ component in Zn0.95Co0.05O sample is slightly higher than that of Co3O4, suggesting 

that Co3+ ions in wurzite structure have slightly lower symmetry and additionally exists 

small difference in ΔS of the Zn0.95Co0.05O and Co3O4 samples (for Co3+ component), 

suggesting that Co3+ions could be presumably located in both surface and core-interstitial 

region, occupying distorted octahedral sites i.e., pseudo-octahedral environment. 

 

3.5 Electron Paramagnetic Resonance: Figure 7 illustrates the experimental EPR spectra 

recorded at a chosen temperature of 5 K for Zn1-xCoxO with 0.01 ≤ x ≤ 0.10 annealed for 1 

h. In these types of compounds, the cobalt atoms substitute the zinc atoms and the neutral 

charge state is commonly Co2+ (3d7 configuration). 59Co has I=7/2 which gives rise, in 

single crystals, to an eight line hyperfine pattern, when the magnetic field is along the c-

axis.[11], [47] The spectra are composed of a dominant sharp peak centered at around 1526 

G (gx= gy= 4.6) and a weaker and relatively broad signal at 3015 G (gz= 2.2). These lines 

are attributed to the perpendicular component (H ⊥ c) corresponding to tetrahedrally 

coordinated paramagnetic (PM) Co2+ ions substituting at Zn2+ sites in the wurzite ZnO 

 
 



 
 

structure and to the parallel component (H || c) respectively, suggesting that the system 

symmetry is axially distorted.[11] The lines with a g value of ~1.96 or 2.004 associated to 

shallow donors or core-shell vacancies originating from zinc and oxygen vacancies 

respectively [48], [49] and the EPR line at 2800 G, probably attributed to the Co3O4, were 

not detected.[11] It is worth mentioning that seven hyperfine components (average 

hyperfine coupling constant A ~ 200 G), around the signal located at 3015 G, marked by 

arrows in the inset (a) of Figure 7, can be observed in the spectrum of Zn0.99Co0.01O sample. 

As Co doping concentration increases, the hyperfine splitting disappears due to increased 

interaction between the doped Co2+ ions. From Figure 7, it can be seen that the 1500 G 

signal became increasingly broadened (from 130 to 450 G) with increasing Co 

concentration. This behavior is correlated to the large concentration of spins of the isolated 

Co2+ ions, which is known to contribute to the broadening of the signal. It is well known 

that the EPR spectra of the Co dopant in the ZnO nanopowders depend strongly on the Co 

concentration and that the area under the integrated spectrum is proportional to the spin 

concentration. In order to investigate this variation, the EPR spectra have been performed 

keeping all controllable experimental parameters constant such as microwave power, 

frequency, field modulation and sample mass. Inset (b) of Figure 7 shows the double 

integration of the corresponding experimental EPR spectra plotted as a function of x. It is 

noted that initially the EPR signal intensity increases from x = 0.01 to x = 0.03, reaching a 

maximum at this concentration and then decreases as x increases. These results, along with 

the XPS data discussed above, strongly point out that a significant fraction of the 

interacting high spin Co2+ (S=3/2) ions are converted into low spin Co3+(S=0) state as x 

increases from 0.03 to 0.05. According to EPR, XRD, XPS and optical absorption results, 

 
 



 
 

these observations may suggest that there is a mixture of valence ions, Co3+ and Co2+, at x = 

0.05 and beyond this concentration some of these Co3+ ions can be segregated as ZnCo2O4.  

Summarizing, XRD, optical absorption, XPS and EPR results suggest that there exist a 

solid solubility limit of Co2+ ions in Co doped ZnO when x ≤ 0.03, and some of these Co2+ 

are converted into Co3+, when x = 0.05. Upon further Co doping above 0.05, the Co3+ ions 

concentration must exceed the absolute solid solubility limit. Then, Co3+ atoms cannot be 

solid dissolved into the ZnO lattice, so that they form an impurity phase containing Co3+ 

ions such as ZnCo2O4. 

 

3.6 Magnetic Measurements: Figure 8 shows the 5K and RT M vs H curves of all Co 

doped ZnO samples along with Co3O4 annealed at 550 oC for 1 h. Hysteresis loops at 5K of 

all samples including Co3O4, showed a linear behavior (see the insets of Figure 8). At RT, it 

can be seen that with increasing Co concentration, the linear part, owing to the PM 

component, increases [(see also Figure 11 (b)]. This result is in full agreement with EPR 

data, indicating large concentration of isolated Co2+ ions as x increases. Clear hysteresis 

loops are observed in the samples with x ≤ 0.03 suggesting the presence of FM interaction 

at RT. The openings of these M vs H curves decreases substantially with further rise in the 

doping, indicating a paramagnetic and/or superparamagnetic-like behavior from x = 0.05 

onwards. Figure 9 depicts the RT M vs H curves of Zn1−xCoxO (0 ≤ x ≤ 0.08) samples, 

where the linear component has been subtracted (M-χpvs H), to illustrate the actual Ms and 

Hc expected for a FM phase. Here, it is worth mentioning that undoped pure ZnO exhibits 

very weak RT ferromagnetism (RTFM) with saturation magnetization (Ms) of about 0.47 

memu/g.[11] Now, clear FM behavior was observed for Zn1−xCoxO samples with x = 0.01 

and 0.03, while it markedly decreased for x = 0.05. On the other hand, Zn0.92Co0.08O sample 

 
 



 
 

showed a closed and somewhat strange M vs H curve, possibly indicating the presence of 

an impurity magnetic phase in addition to the dominant Co doped ZnO. The Zn0.90Co0.10O 

sample was lacking of hysteresis loops evidencing a superparamagnetic (SP) like behavior 

(see lower inset of Figure 9), with higher Ms, indicating the existence of other magnetic 

interactions due to the presence of a dominant secondary phase. The variation of Ms and Hc 

as a function of nominal Co content for Zn1−xCoxO (0 ≤ x ≤ 0.08) samples are plotted in 

upper inset of Figure 9. Both Ms and Hc parameters increases reaching maximum values for 

x = 0.03 and then decreases as x increases further. Interestingly, the variations of Ms and Hc 

show similar trend as the intensity of the EPR signal at 5K. The low Ms values and the 

presence of the PM component observed in these samples suggest that only a small fraction 

of the doped Co2+ ions participate in the ferromagnetically coupled state, which results in 

weak ferromagnetism. 

 

Figure 10 shows the temperature dependence of the magnetization for Co doped ZnO 

samples annealed for 1 h along with that for Co3O4 sample in both ZFC and FC conditions 

for the applied field value of H = 500 Oe from 5 to 300 K. The M vs T curves of Zn1−xCoxO 

samples present a concave nature similar to PM materials. On the other hand, ZFC and FC 

curves of Co3O4 sample exhibit a Neel temperature of 35 K indicating its AFM behavior. 

These curves were fitted following the modified Curie-Weiss law, χ = χo+C/(T+θ), where 

χo represents non-paramagnetic contributions, C = Nu2/3KB (N is the number of magnetic 

ions/g, u is the magnetic moment of the ion, KB is the Boltzmann constant) and θ is the 

Curie-Weiss temperature. The values of C and θ [(see Figure 11 (a)] indicate that the 

interaction between the disordered paramagnetic-like Co2+ spins (χp) [(see Figure 11(b)], 

observed in the RT M versus H data are AFM in nature. 

 
 



 
 

 

In Figure 11 (b) it can be seen that χo increases from x = 0.01 to 0.03 and slightly decreases 

for x =0.05 and then increases again with further doping. The large increase of χo in the 

Zn1−xCoxO samples with x ≥ 0.08 can be due to the presence of ZnCo2O4. The decrease of 

χo for x =0.05 can be associated to the presence of Co3+, while the increase for the samples 

with x ≤ 0.03 might be due to the increase of Co2+ ions.  

 

Figure 12 shows M-χpvs H curves for Zn1−xCoxO (0.0 ≤ x ≤ 0.08) samples annealed for 3 h. 

The upper inset shows the variation of Ms and Hc with nominal Co doping. It can be seen 

that with increasing annealing time Ms decreased for x = 0.01, 0.03 and 0.05. Now, for x = 

0.08 it was observed an increment in the FM behavior and for x = 0.10 the same SPM like 

behavior was observed but with lower Ms (see lower inset in Figure 12). According to these 

results, it is clear that the increment of annealing time decreases the FM behavior for 

Zn1−xCoxO (0.0 < x < 0.05).  

 

4. DISCUSSION 

 

In brief, we will summarize the analysis of the different data collected using the various 

techniques. Undoped and Co doped ZnO samples with x ≤ 0.05, annealed for 1 h and 3 h 

are pure and free of spurious phases. ZnCo2O4 was the only impurity phase identified in all 

the Co doped ZnO samples with x ≥ 0.08. According to the results, we can divide Zn1-

xCoxO samples into 3 different groups. The first group with x < 0.05 can be considered as 

true solid solutions with only Co2+ ions into ZnO structure, the second group with x = 0.05, 

where there is a presence of multivalence Co ions, i.e. Co2+ and Co3+ without the formation 

 
 



 
 

of an impurity phase, and finally the third group with x > 0.05 where there is a coexistence 

of Zn1-xCoxO and of an impurity phase, more probably ZnCo2O4. In all samples there are 

isolated Co2+ ions that do not interact magnetically at RT, bringing about the observed PM 

signal, which increases with increasing Co concentration. M vs T curves suggest that some 

of these disordered Co2+ ions in Zn1−xCoxO are AFM coupled. On the other hand, clearly 

the sharp reduction in the coercive field of Zn1-xCoxO with ≥ 0.08 is due to the formation of 

ZnCo2O4. The magnetic signals in impurity-free samples are expected to be due to the 

random distribution of the Co ions, which results in the formation of isolated, pairs and 

very small clusters of Co ions at dopant concentrations below the percolation threshold. 

The RT PM behavior can easily be explained due to the presence of isolated ions, pairs, and 

magnetically coupled Co ions whose transition temperature are below RT. The AFM signal 

can be explained by the superexchange interactions between Co2+ ions.  

 

Now, let us discuss the possible physical sources of the RTFM signal in our samples. The 

magnetic data revealed that Ms increases with increasing Co content and decreases with 

increasing annealing time. These results could indicate that percolation of bound magnetic 

polarons (BMPs) may be responsible for RTFM. Within the BMP model, the large density 

of oxygen vacancies and more concentration of dopants help to produce more BMPs, which 

yield a greater overall volume occupied by BMPs, leading to the overlap of BMPs and 

enhancing ferromagnetism, whereas with increasing annealing time the number of VO 

decreases, therefore reducing the FM interaction. In order to predict if BMP model is 

suitable to explain the magnetic properties of Zn1-xCoxO samples with 0.0.1 ≤ x ≤ 0.03, we 

fitted the M vs H to the following equation:[50] 

 

 
 



 
 

 

 

where the first term accounts for the BMP contribution and the second term is due to the 

observed PM contribution at higher field. Here, the spontaneous moment of the system is 

given by , where  is the number of BMPs involved and  is the 

spontaneous magnetic moment per BMP.  is the Langevin function 

with , where  is the true spontaneous moment per BMP. At high 

temperature, the interaction between the BMPs can be ignored and . From 

Figure 13 it is observed that the Equation fits well the experimental data. The fitting 

parameters of the two curves are summarized in Table 1. From this table is noted that Mo 

and  match well with data showed in Figures 9 and 11 (b) evidencing the goodness of fit. 

N values which were obtained from  and  are around 1013/cm3, which is very small 

in comparison to required concentration of BPMs (~1020/cm3) for percolation in ZnO. [50] 

Additionally, is observed that this value decrease slightly with increasing Co concentration. 

Thus, the BPMs model is insufficient or not appropriated to explain RTFM in these Co 

doped ZnO samples. Thus, BPMs model does not seem to explain this behavior, then, it is 

necessary search for other type of models more commensurate with our results.  

 

Now, it was observed that in Zn1-xCoxO sample with x = 0.05, there was a mixed valence of 

Co ions (Co2+ and Co3+) without the presence of impurity phase and a reduction of the Ms. 

The charge transfer ferromagnetic model, proposed by Coey et al. [51], [52] is based in the 

ability of the doped TM ions to exhibit mixed valence and exchange coupling to provide 

 
 



 
 

electrons locally into the conduction band or to accept electrons from it. This model 

requires the existence of a defect-based band having a peak in the density of states (DOS) 

close to the Fermi level, a charge reservoir for transferring electrons, and an effective 

exchange integral associated with the defect states. Although there is a charge reservoir for 

transferring electrons, this model seems not to influence considerably the FM properties of 

Zn1-xCoxO nanoparticles. According to XPS results, the Co3+ ions formed are presumably 

located in both, surface and core interstitial sites decreasing the oxygen-deficient regions. 

Therefore, possible excess or remnant donor defects cannot contribute to the charge transfer 

process and only form isolated spin polarons and Stoner criterion  is not 

satisfied. The reduction in magnetization in Zn1-xCoxO with x = 0.05 can be related to 

decrease in oxygen vacancies within matrix ZnO. The presence of Co2+ in ZnO produce 

free charge carriers as well as VO centers. When x reaches 0.05, and Co3+ ions are formed, 

results in the annihilation of VO, by reducing the free charge carrier density. Then we need 

to find other possible sources for the RTFM signal.  

 

In our previous paper we discussed the physical origin of the FM signal in Fe-Co co doped 

ZnO samples.[19] In that work the integral intensity of the EPR signal corresponding to the 

Co2+ ions was adequately fitted using the Curie law. The results from these fits showed 

negative Curie-Weiss temperature values suggesting that some Co2+ ions were weakly FM 

coupled. Therefore, we could expect a similar trend in the present samples, because they 

were prepared in the same way. Moreover, Acosta-Humánez et. al [14], Mesaros et al. [47] 

and Raita et al. [47] also reported FM coupling of Co ions in Co-doped ZnO nanoparticles 

prepared by modified sol-gel methods using EPR.  

 
 



 
 

On the other hand, Straumal et al. [53] have proposed that the main factor controlling the 

ferromagnetic behavior of Co-doped ZnO is the value of the specific grain boundary 

area (sGB). According to the authors, the Co doped ZnO becomes ferromagnetic if sGB is 

higher than a certain threshold value sth = 1.5 × 106 m2/m3. The sGB value can be calculated 

by using the formula sGB = 1.65/Dv, where Dv is the mean crystal size.[54] Our samples 

shows typical values of sGB = 3,7 × 107 m2/m3, which is much higher than sth. Therefore, FM 

can also arise due to the grain boundary in doped nanoparticles. This model could also 

contribute to the RTFM signal in our samples. Finally, the formation of different types of 

intrinsic defects and the perturbation/alteration and/or changes in the electronic structure of 

ZnO due to the incorporation of the Co2+ ions can be additional sources of FM in these 

samples.  

 

5. CONCLUSIONS 

 

We investigated in detail the crystallographic, optical, electronic and magnetic properties of 

sol-gel synthesized undoped and Co doped ZnO nanopowders. Within the detection limit of 

the techniques we found that the samples with less than 8 at. % of Co content were free of 

spurious phases, suggesting that the solubility limit were below that value. For the 

impurity-free samples, the high spin Co2+ ions replaced the Zn2+ ions at the ZnO lattice and 

for 5 at. % Co additionally Co3+ ions were detected. For these samples, the bang gap, L and 

both lattice parameters decrease with increasing Co content, whereas the PM and AFM 

signals, the average crystallite size and, R increase. Interestingly, the variation of Ms shows 

a similar trend as the intensity of the EPR signal intensity of Co2+ at 5K, suggesting that 

 
 



 
 

these ions directly contributed to the FM signal. BPM model is insufficient to explain the 

RTFM in these Co doped ZnO samples and the charge transfer ferromagnetic model seems 

not influence considerably the FM properties of Zn1-xCoxO nanoparticles According to the 

results obtained in this paper, the FM behavior may be originated from a combination of 

several factors such as the presence of high spin Co2+ ions, the formation of defect levels 

(free delocalized charge of carriers holes or electrons) close to the valence band edge and 

grain boundaries effects.  
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TABLES 

Table 1: Fitting parameters extracted from the BMP model. 

Zn1-xCoxO Mo 
(emu/g) 

meff 
(emu) (emu/gOe) 

N * 
cm3 

x=0.01 1.50 X10-3 2.61 X10-16 5.8 X10-7 3.25 X1013 
x=0.03 1.70 X10-3 2.97 X10-16 2.58 X10-6 3.23 X1013 

* Calculated data with the density obtained from XRD analysis. 

 

 

 

 

 
 



 
 

FIGURE CAPTIONS 

Figure 1: Rietveld refinement analysis of XRD patterns of Co doped ZnO samples 

annealed at 550 ºC for 1 h. Solid spheres are experimental data, whereas red solid lines 

represent the fit. The blue lines below represent the difference pattern. The top panel at the 

right side shows some selected expanded regions in the 31º to 37º 2θ range. 

 

Figure 2: Variation of (a) a and c lattice parameters, (b) Zn–O bond length (L) parallel to 

the c-axis and average crystallite size (Dv), and (c) lattice distortion degree (R) and c/a ratio 

as a function ofCo content for all Co doped ZnO samples annealed for 1 h (left part) and for 

3 h (right part).  

 

Figure 3: FTIR spectra of Zn1-xCoxO (0 ≤ x ≤ 0.05) samples annealed at 550 o C for 1 h.  

 

Figure 4: (a) Optical absorbance spectra of ZnO and Co doped ZnO samples annealed at 

550 o C for 1 h. The inset shows the variation of the observed (red solid spheres) and 

calculated [36] band gaps (blue solid triangles; see text) with the nominal Co content. (b) 

Derivative of absorbance spectra with respect to wavelength for Zn1-xCoxO samples 

annealed at 550 oC for 1 h. 

 

Figure 5: (a) Optical absorbance spectra of ZnO and Co doped ZnO samples annealed at 

550 o C for 3 h. The inset shows the variation of the observed (red solid spheres) and 

calculated [36] band gaps (blue solid triangles; see text) with the nominal Co content. (b) 

Derivative of absorbance spectra with respect to wavelength for Zn1-xCoxO samples 

annealed at 550 oC for 3 h.  

 
 



 
 

Figure 6: (a) Wide survey X- ray photoelectron spectra of undoped ZnO and Zn1xCoxO 

samples with 0.01 < x < 0.05 samples annealed for 1h. The spectra of the core-electron 

regions of (b) Zn 2p, (c) O 1s and (d) Co 2p are also shown. The shadow areas in (d) 

represent the Co3+ component. 

 

Figure 7: EPR spectra recorded at 5 K of Co doped ZnO samples annealed at 550 °C for 1 

h. Inset (a) shows expanded region for Zn0.99Co0.01O sample evidencing hyperfine splitting 

pointed out  by arrows. Inset (b) shows the integrated intensity of the EPR spectra plotted 

as a function of x. 

 

Figure 8: RT hysteresis loops for Co doped ZnO nanoparticles along with Co3O4 sample 

annealed for 1 h. The insets show hysteresis loops at 5 K. 

 

Figure 9: RT magnetic hysteresis loops (M-χpvs H) of Zn1−xCoxO samples in the range of 

0.0 ≤ x ≤ 0.08 annealed for 1h. Lower inset shows M-χpvs H for Zn0.90Co0.1O, while upper 

inset shows the variations of coercive field (Hc) and saturation magnetization (Ms) with 

nominal Co concentration. The dashed line in upper inset represents the Ms value of 

undoped ZnO.  

 

Figure 10: M(T) curves with H = 500 Oe for 1, 3, 5, 8 and 10 % Co doped ZnO samples 

annealead for 1h. The symbols (solid lines) correspond to ZFC (FC) data. The inset shows 

ZFC and FC curves for Co3O4. 

 

 
 



 
 

Figure 11: Changes in (a) Curie constant (C) and Curie-Weiss temperature (θ) and (b) the 

linear paramagnetic component χp (obtained from Figure 8) and non-paramagnetic 

contributions, χo, of Zn1−xCoxO samples as a function of x.  

 

Figure 12: RT magnetic hysteresis loops (M-χpvs H) of Zn1−xCoxO samples with 0.0 ≤ x ≤ 

0.08 annealed for 3 h. Lower inset shows M-χp vs H for Zn0.90Co0.1O, while upper inset 

shows the variations of coercive field (Hc) and saturation magnetization (Ms) with nominal 

Co concentration. 

 

Figure 13: Initial portion of the M vs H curve fitted with the BMP model [50] for Zn1-

xCoxO samples with 0.0.1 ≤ x ≤ 0.03 annealed for 1h. Open symbols are experimental data 

and the solid lines represent the fit. 
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Figure 1: Rietveld refinement analysis of XRD patterns of Co doped ZnO samples 
annealed at 550 ºC for 1 h. Solid spheres are experimental data, whereas red solid lines 
represent the fit. The blue lines below represent the difference pattern. The top panel at the 
right side shows some selected expanded regions in the 31º to 37º 2θ range. 
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Figure 2: Variation of (a) a and c lattice parameters, (b) Zn–O bond length (L) parallel to 
the c-axis and average crystallite size (Dv), and (c) lattice distortion degree (R) and c/a ratio 
as a function ofCo content for all Co doped ZnO samples annealed for 1 h (left part) and for 
3 h (right part).  
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Figure 3: FTIR spectra of Zn1-xCoxO (0 ≤ x ≤ 0.05) samples annealed at 550 o C for 1 h.  
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Figure 4: (a) Optical absorbance spectra of ZnO and Co doped ZnO samples annealed at 
550 o C for 1 h. The inset shows the variation of the observed (red solid spheres) and 
calculated [36] band gaps (blue solid triangles; see text) with the nominal Co content. (b) 
Derivative of absorbance spectra with respect to wavelength for Zn1-xCoxO samples 
annealed at 550 oC for 1 h. 
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Figure 5: (a) Optical absorbance spectra of ZnO and Co doped ZnO samples annealed at 
550 o C for 3 h. The inset shows the variation of the observed (red solid spheres) and 
calculated [36] band gaps (blue solid triangles; see text) with the nominal Co content. (b) 
Derivative of absorbance spectra with respect to wavelength for Zn1-xCoxO samples 
annealed at 550 oC for 3 h.  
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Figure 6: (a) Wide survey X- ray photoelectron spectra of undoped ZnO and Zn1xCoxO 
samples with 0.01 < x < 0.05 samples annealed for 1h. The spectra of the core-electron 
regions of (b) Zn 2p, (c) O 1s and (d) Co 2p are also shown. The shadow areas in (d) 
represent the Co3+ component. 
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Figure 7: EPR spectra recorded at 5 K of Co doped ZnO samples annealed at 550 °C for 1 
h. Inset (a) shows expanded region for Zn0.99Co0.01O sample evidencing hyperfine splitting 
pointed out  by arrows. Inset (b) shows the integrated intensity of the EPR spectra plotted 
as a function of x. 
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Figure 8: RT hysteresis loops for Co doped ZnO nanoparticles along with Co3O4 sample 
annealed for 1 h. The insets show hysteresis loops at 5 K. 
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Figure 9: RT magnetic hysteresis loops (M-χpvs H) of Zn1−xCoxO samples in the range of 
0.0 ≤ x ≤ 0.08 annealed for 1h. Lower inset shows M-χpvs H for Zn0.90Co0.1O, while upper 
inset shows the variations of coercive field (Hc) and saturation magnetization (Ms) with 
nominal Co concentration. The dashed line in upper inset represents the Ms value of 
undoped ZnO.  
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Figure 10: M(T) curves with H = 500 Oe for 1, 3, 5, 8 and 10 % Co doped ZnO samples 
annealead for 1h. The symbols (solid lines) correspond to ZFC (FC) data. The inset shows 
ZFC and FC curves for Co3O4. 
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Figure 11: Changes in (a) Curie constant (C) and Curie-Weiss temperature (θ) and (b) the 
linear paramagnetic component χp (obtained from Figure 8) and non-paramagnetic 
contributions, χo, of Zn1−xCoxO samples as a function of x.  
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Figure 12: RT magnetic hysteresis loops (M-χpvs H) of Zn1−xCoxO samples with 0.0 ≤ x ≤ 
0.08 annealed for 3 h. Lower inset shows M-χp vs H for Zn0.90Co0.1O, while upper inset 
shows the variations of coercive field (Hc) and saturation magnetization (Ms) with nominal 
Co concentration. 
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Figure 13: Initial portion of the M vs H curve fitted with the BMP model [50] for Zn1-

xCoxO samples with 0.0.1 ≤ x ≤ 0.03 annealed for 1h. Open symbols are experimental data 
and the solid lines represent the fit. 
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