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S U M M A R Y

Tuberculosis (TB) remains a serious concern more than two decades on from when the World Health

Organization declared it a global health emergency. The alarming rise of antibiotic resistance in

Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the

disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with

novel mechanism(s) of action is thus of paramount importance to tackle drug resistance. The

development of novel chemical entities requires more than 10 years of research, requiring high-risk

investment to become commercially available. Repurposing pre-existing drugs offers a solution to

circumvent this mammoth investment in time and funds. In this context, several drugs with known

safety and toxicity profiles have been evaluated against the TB pathogen and found to be efficacious

against its different physiological states. As the endogenous targets of these drugs in the TB bacillus are

most likely to be novel, there is minimal chance of cross-resistance with front-line anti-TB drugs. Also,

reports that some of these drugs may potentially have multiple targets means that the possibility of the

development of resistance against them is minimal. Thus repurposing existing molecules offers

immense promise to tackle extensively drug-resistant TB infections.

� 2014 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
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1. Introduction

The global resurgence of tuberculosis (TB) has been fuelled by
its synergy with the AIDS pandemic,1 and the transmission of drug-
resistant strains of the causative agent, Mycobacterium tuberculo-

sis.2,3 Diabetes, smoking, alcoholism, and other lifestyle-related
factors have boosted the rise in TB in wealthy nations, while its
stronghold remains in the poorer countries struggling to cope with
the effects of population explosions, overcrowding, pollution,
poverty, and malnutrition.4

Through partnerships between pharmaceutical companies and
research-led institutes, drug discovery and development has
accelerated considerably in recent times, leading to a handful of
successful novel lead chemical entities aimed at the drug-
resistant forms of TB. However, we should refrain from being
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over-enthusiastic about these wonderful drugs and focus on
strengthening the growing arsenal of anti-TB therapeutic agents to
outpace the pathogen’s evolving resistance.5 The development of
resistance mainly involves genetic evolution of the pathogen to
overcome the deleterious effects of the drug and is hastened by
inappropriate prescription/administration and patient non-com-
pliance. Thus, it is not unlikely that resistance towards novel
agents will arise in the organism, making it more important to
work towards increasing the available treatment options that
target diverse metabolic pathways in the pathogen.

The major problem in the elimination of M. tuberculosis from an
infected individual is its resilience and coping mechanisms, which
enable it to face varied hostile environments.6 Under inhospitable
conditions, the bacilli enter into physiological stagnation, becom-
ing viable but non-culturable, commonly referred to as dormant. A
third of the global population harbours the TB bacillus in its
dormant state, causing a latent TB infection. Ten percent of these
infected individuals regularly progress to active TB disease. The
dormant bacilli are resilient to standard chemotherapy, and as a
ciety for Infectious Diseases. This is an open access article under the CC BY-NC-ND
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Table 1
Current uses of drugs and progress made towards repurposing them for TB treatment. Drugs marked with an asterisk (*) are probable candidates for inclusion in TB treatment

regimens as host-directed adjuvant therapy due to their immune-modulatory activity

Name Class Current use In vitro MIC

against H37Rv

Stage of repurposing References

Ivermectin Avermectin Anti-helminthic 6.8 mM Anti-TB property detected by MTT assay 55

Carprofen* 2-Arylpropanoid

acid NSAID

Analgesic 146 mM Anti-TB property detected in vitro

by HT-SPOTi

75

Clofazimine Riminophenazine Anti-leprosy 1.6 mM NC003 (phase IIa) – complete; results

in 2014. Second-line treatment for TB

48

Chlorpromazine* Phenothiazine Anti-psychotic 47 mM Mouse model studies using MDR-TB strains 69

Disulfiram* Thiocarbamate Alcohol withdrawal

drug

5.3 mM Anti-TB property detected by broth

dilution tests

71

Entacapone Nitrocatechol Anti-Parkinson’s drug 205 mM Anti-TB property predicted by systems biology.

In vitro activity detected by broth dilution

62

Gatifloxacin Fluoroquinolone Respiratory infections 660 nM Phase III; enrolment complete 25

Linezolid Oxazolidinone Gram-positive bacteria 741 nM Phase II completed 44

Metronidazole Nitroimidazole Broad-spectrum

antibiotic

>1.4 mM Phase II completed 33

Meropenem/

clavulanic acid

b-Lactams Antibiotic 1.7 mM In vivo and small-scale human patient studies 39, 42

Moxifloxacin Fluoroquinolone Acute bacterial

sinusitis

1.1 mM REMox TB – completed

STAND (phase III) – enrolment begins in 2014

26

Nitazoxanide Nitrothiazole Anti-protozoal 52 mM In vitro activity detected 60

Oxyphenbutazone* Pyrazolidinedione

NSAID

Analgesic 200 mM

(12.5 mM against

non-replicant)

In vitro activity detected 76

Pyrvinium pamoate Methylquinolinium Anti-helminthic 310 nM In vitro activity detected by Alamar blue assay 57

Tebipenem/

clavulanic acid

b-Lactams Antibiotic 2.9 mM Enzyme inhibition studies 36, 37

Thioridazine Phenothiazine Anti-psychotic 27 mM Anti-TB property detected in vitro by

BACTEC 460-TB

64, 69

Tolcapone Nitrocatechol Anti-Parkinson’s drug 457 mM Anti-TB property predicted by systems biology 62

TB, tuberculosis; MIC, minimum inhibitory concentration; NSAID, non-steroidal anti-inflammatory drug; MDR, multidrug-resistant.

A. Maitra et al. / International Journal of Infectious Diseases 32 (2015) 50–55 51
consequence, there is a biphasic pattern of elimination of the
pathogen from the infected host, necessitating a lengthy duration
of drug treatment.7 An effective means to control the spread of the
disease would be to eliminate the dormant bacilli; however, there
are almost no effective treatments to remove this subset of
pathogens from the primary host.8

Formulating a commercial drug usually begins from a modest
laboratory bench and is a lengthy and expensive process, requiring
highly skilled experimental researchers and state-of-the-art
facilities. Furthermore, out of the thousands of potential molecules,
only a handful are finally identified as druggable hits. Although
there is wide debate on the reasons for the high attrition rates seen
in clinical trial pipelines, there is no conflict over the fact that
success rates in drug development are very low.9 A thorough
investigation of 835 drug developers revealed that 10% of all
entities in phase I trials were finally approved by the US Food and
Drug Administration.10 As a result, there is an unbalanced risk–
benefit assessment biased more towards the risk element and
higher regulatory hurdles and complexity of clinical trials, leading
to commercial and financial decisions driving project termination.

The most common roadblocks faced by novel chemical or
molecular entities result from inappropriate compound selection,
leading to poor biological efficacy, a lack of equivalence between in
vitro models, animal models, and the human disease, and finally
poor study design. Advances in genome sequencing announced
firmly the one compound–one target paradigm of drug discovery,
which in the light of growing resistance needs to be re-evaluated.
There is a pressing need for new treatments; hence the
repurposing or repositioning of drugs to treat TB is progressively
gaining favour. It is a powerful strategy that complements novel
drug design, thereby populating the clinical trials pipeline.
Regulators often require long-term data including a number of
study arms with a variety of patient age and risk groups,
necessitating the recruitment of a large number of patients.
Repurposing benefits from the knowledge obtained from prior,
long-term administration of the drug to a wide phenotypically
distinct human population. These molecules are thoroughly
characterized with regards to metabolism and safety and thus
this strategy can be instrumental in saving valuable time and
funds.

2. Repurposing is an attractive strategy

Both the terms ‘repurposing’ and ‘repositioning’ have the same
broader meaning, however other terms such as drug reprofiling,
drug retasking, or therapeutic switching have also been
employed.11

Drugs originally developed to treat a certain condition may
interact with unrelated targets exhibiting a secondary biological
effect, thereby offering positive therapeutic windows for a variety
of different applications, as seems to be the case for thalidomide.12

These drugs do not necessarily require toxicity profiling, target
validation, hit-to-lead optimization, and/or in vivo metabolic
studies. The most notable example of a successfully repurposed
drug is sildenafil (Pfizer); this was developed as an antihyperten-
sive drug and turned out to be a selective inhibitor of the human
phosphodiesterase 5,13 and thus provided a solution to erectile
dysfunction. It is now being considered as an adjuvant host-
directed therapy to shorten treatment times for TB and has shown
promise in mouse model studies.14

As alluded to above, thalidomide is another example of a drug
with various applications. Made infamous due to its teratogenic
effect on unborn children, it is now regularly used in the treatment
of leprosy15 and has shown great promise in relieving TB
meningitis symptoms in children.16 With increasing numbers
falling prey to drug-resistant TB and treatment options gradually
decreasing, we aim to discuss the drugs that show promise in TB
treatment, to enable deliberations on their inclusion in TB
treatment trials.
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Repurposing drugs in order to develop novel TB treatments has
gained acceptance and has gathered pace, with other drugs already
in various phases of pre-clinical and clinical trials (Table 1).17,18

3. Other anti-infectives as potential repurposed anti-TB drugs

Fluoroquinolones have thus far been used with much success as
potent, broad-spectrum antibiotics. They act by inhibiting the
enzymes topoisomerase II and IV, thereby disrupting DNA
replication.19 Newer generation fluoroquinolones, moxifloxacin
and gatifloxacin (Figure 1), have shown bactericidal properties
against M. tuberculosis in both in vitro and in vivo studies20,21 and
are already in use as second-line treatment for TB.22 Following
promising results in the treatment of human subjects with
pulmonary TB,23 moxifloxacin progressed to phase III clinical
trials that aimed to determine whether its addition to the
conventional therapy could shorten the duration required to
achieve sterility, with encouraging outcomes.24–26 Moxifloxacin is
also currently being evaluated in a TB Alliance phase III clinical trial
with pretomanid and pyrazinamide (PaMZ).

Shortening the treatment regimen is crucial in improving
patient compliance and thus is one of the main driving forces of
anti-TB drug discovery and development. Another motive is the
need to tackle the increasing resistance of the organism. There is
evidence of mycobacterial resistance to fluoroquinolones27 caused
by stepwise mutations acquired in the target genes gyrA and
gyrB.28 Although there is no cross-resistance observed with the
other first-line drugs,29,30 there is cross-resistance within this
group of molecules. However, as this cross-resistance is not
universal,31 it is expected that newer fluoroquinolones, such as
TBK613, will still be effective against fluoroquinolone-resistant
strains. This illustrates the cohesive nature of the two strategies of
novel drug discovery and drug repurposing, where the structure–
activity relationship of a repurposed drug enables the design of
novel molecules with higher potency.

Similarly, bicyclic nitroimidazofurans, developed for cancer
chemotherapy, were found to be active against M. tuberculosis.
Whilst these molecules turned out to be highly mutagenic, their
Figure 1. Chemical structures of the drugs that may be repurposed
relatives, nitroimidazopyrans, which resemble the common
antibiotic metronidazole, exhibited activity against actively
growing and dormant M. tuberculosis.32,33 Based on these
discoveries, the novel chemical entities (NCEs) PA-824 and OPC-
67683 are currently in clinical trials.34 Metronidazole itself is
highly active against M. tuberculosis32 and has been reported to
prevent the reactivation of dormant bacilli in macaque infection
models.35 The drug requires reductive activation in hypoxic
conditions to produce single-electron species that cause DNA
damage. As M. tuberculosis bacilli survive in hypoxic conditions
within the granuloma of a diseased patient, metronidazole has the
potential to affect this subset of the bacterial population in both
active and latent TB. Targeting these difficult-to-treat bacilli
has positive implications for the possibility of shortening the
treatment regimen.

Beta-lactam antibiotics act through inhibition of the mem-
brane-bound transpeptidases that have a pivotal role in cross-
linking the peptidoglycan layer of the cell wall.36 In addition to its
intrinsic impermeability, M. tuberculosis is inherently resistant to
b-lactam antibiotics primarily due to the presence of a highly
active b-lactamase. Hence, penicillins and other b-lactams have
proved to be ineffective in TB treatment. However clavulanate, a b-
lactamase inhibitor, in conjunction with carbapenems showed
killing of M. tuberculosis in vitro37 and in a murine model.38

Moreover, a case study of six patients also reported the
encouraging result that the drug effectively cleared immunocom-
promised patients of extensively drug-resistant (XDR)-TB infec-
tions, underlining the high potential of the drug combination as a
strategy to treat TB in humans.39 A recent study identified the b-
lactam tebipenem, originally developed to tackle otolaryngological
and respiratory infections in paediatric patients,40 to be the most
potent anti-TB oral carbapenem in combination with clavulanic
acid,41 and clinical trials may start soon.

The addition of meropenem–clavulanate to linezolid-containing
regimens also produced efficacious results, as reported in 2013.42

Linezolid, originally used against Gram-positive bacteria, also
exhibits anti-TB properties and favourable clinical efficacy,43,44

however the adverse effects on prolonged administration of the
 to treat extensively drug-resistant Mycobacterium tuberculosis.
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drug make it a therapeutic alternative that should be used with
care.45 Its analogue, sutezolid (PNU-100480), has exhibited activity
against M. tuberculosis in murine models without the toxic effects of
the former. This class of drugs act by inhibiting protein synthesis by
binding to the peptidyl site of the 50S ribosomal subunit.46 A clinical
early bactericidal activity (EBA) trial of sutezolid involving two
different dosing schedules, one of 600 mg twice a day and the other
of 1200 mg each day, found that sutezolid was safe, generally well
tolerated, and resulted in significant bactericidal activity in both
sputum and blood.47

The anti-leprosy drug, clofazimine (Figure 1), is successful in
treating incidences of multidrug-resistant (MDR)- and XDR-TB and
is listed as a World Health Organization recommended second-line
drug.48 Its mechanism of action is widely considered to be
membrane-directed.49 A riminophenazine antibiotic, the effec-
tiveness of clofazimine is attributed to its propensity to accumu-
late in the phagocytes and its slow metabolic elimination.50,51 In
2010, a trial in Bangladesh reported a relapse-free cure rate of
87.9% following a 9-month treatment regimen including clofazi-
mine for the treatment of drug-resistant TB.52,53 Clofazimine is
used to treat XDR-TB when first- and second-line drugs have failed,
however its efficacy is not conclusive and further studies are
required. Clofazimine has been included in one of the arms of the
STREAM trial, which is due to be completed in late 2016.54

Members of the avermectin family (Figure 1), traditionally used
as anti-helminthic agents in the veterinary setting, have been
found to inhibit the growth of even MDR strains of M. tuberculosis

in vitro.55 However, the minimum inhibitory concentration (MIC)
of the drug is disputed56 and its precise mechanism of action in M.

tuberculosis also remains to be elucidated. Another anti-helminthic
agent, pyrvinium pamoate, was found to be a strong inhibitor of M.

tuberculosis.57 It is thought to disrupt glucose and glycogen
utilization pathways in the bacterium.58

Nitazoxanide has been in use since 2002 to treat diarrhoea due
to infection with Giardia and Cryptosporidium spp and was shown
to treat metronidazole and albendazole-resistant Giardia duode-

nalis in an HIV-positive patient.59 It has since been found to inhibit
both replicating and non-replicating forms of M. tuberculosis.60,61

Moreover, its low eukaryotic cytotoxicity, coupled with no reports
of resistance in other bacteria during its clinical use and a failure to
generate resistant M. tuberculosis mutant strains, make this drug
extremely promising.

4. Non-anti-infective drugs may be repurposed to treat drug-
resistant TB

Entacapone and tolcapone (Figure 1) primarily target human
catechol-O-methyltransferase (COMT), which is involved in the
breakdown of neurotransmitters. They are commercially available
and prescribed as an adjunct in the treatment of Parkinson’s
disease. Both have been shown to be active against M. tuberculosis

at around 260 mM, which is lower than toxic concentrations for
eukaryotic cells. Entacapone and tolcapone have been predicted to
inhibit the enoyl–acyl carrier protein reductase (InhA),62 an
essential component in the synthesis of long-chain mycolic acids.
Unlike isoniazid, these drugs require no enzymatic activation to
bind to the enzyme. Hence, they may avoid the primarily resistant
mutation in the activating catalase KatG, exhibited by many MDR
strains.

Thioridazine (Figure 1) is a neuroleptic drug that was developed
to treat psychoses and is considered one of the first-generation
anti-psychotics. Thioridazine and chlorpromazine are members of
the phenothiazine class of neuroleptics, and both have repeatedly
been found to inhibit the growth of mycobacteria.63–65 The
proposed mechanism of action of the phenothiazines is inhibition
of type II NADH:menaquinone oxidoreductase,66 which is involved
in the transport of electrons from NADH to the mycobacterial
quinone pool, although inhibition of calcium transport has also
been postulated.67 Thioridazine has been found to be useful in
treating patients infected with XDR-TB68 and it is expected to enter
into clinical trials soon.69

Disulfiram (Figure 1) has been used since the 1940s to treat
chronic alcoholism.70 The compound inhibits an ethanol degrada-
tion enzyme – acetaldehyde dehydrogenase – causing the
accumulation of acetaldehyde, which provokes an unpleasant
‘hangover’ effect. Disulfiram showed complete inhibition of M.

tuberculosis H37Rv growth at a concentration of 5.26 mM.71 The
drug showed the same level of inhibition against clinical isolates
and MDR and XDR strains, and an in vivo experiment on guinea pigs
demonstrated remarkable bactericidal activity.71

The immunomodulatory properties of 1a,25-dihydroxy-vita-
min D are affected through the toll-like receptor (TLR) activation of
human macrophages. This results in an over-expression of the
vitamin D receptor and hydroxylase genes. This is followed by an
induction of the antimicrobial peptide, cathelicidin, which is
considered responsible for the killing of intracellular M. tuberculo-

sis.72,73 Based on these in vitro results, a multicentre randomized,
controlled trial of adjunctive vitamin D in adult TB patients living
in London was carried out. It was reported that it did not
significantly affect time to sputum culture conversion in the whole
study population, but it did significantly hasten sputum culture
conversion in participants with a particular genotype of the
TaqI vitamin D receptor gene.74

Non-steroidal anti-inflammatory drugs (NSAIDs) are very
commonly used worldwide for their anti-inflammatory, analgesic,
and antipyretic purposes. Although the antibacterial properties of
some of these drugs were discovered many years ago, they have
only been subjected to intense investigation within the last decade,
revealing that some of them possess selective anti-TB activity. Two
NSAIDs, carprofen75 and oxyphenbutazone76 (Figure 1), have been
found to inhibit the growth of M. tuberculosis H37Rv at micromolar
concentrations, and interestingly they appear to be active against
mycobacterial cells of low metabolic activity. While their
mechanism of action in M. tuberculosis is yet to be validated, a
number of reports have indicated the involvement of multiple
endogenous targets (Maitra et al., unpublished results).76,77 The
low likelihood of adverse effects following the administration of
common NSAIDs is one of the benefits of including them in anti-TB
therapy. Additionally, their capacity to eradicate the germ and
assist in the healing of the tissues damaged by prolonged drug
treatment and extensive host–pathogen interactions, make them
very strong candidates for repurposing as TB treatment.78 As there
is enormous interest in repurposing drugs for the treatment of
XDR-TB, it is highly likely that more such candidates will be
included in successful combination therapies in the near future.

5. Conclusions

Repurposing drugs is undoubtedly an attractive strategy in
modern drug development and especially against TB, for which
there are a number of interesting old drugs with in vitro growth
inhibitory activities. Whole-cell evaluations of drugs using
methods such as microplate Alamar blue assays (MABA)79 and
HT-SPOTi75,80,81 have proven to be indispensable for the rapid
detection of drugs that have potential in repurposing. Although
many of the potential anti-TB drugs were identified through
serendipity, combining the assays with systems biology will
provide a more rational approach in the identification of these
drugs. As the paradigm for TB drug discovery shifts from the
conventional one-target one-drug to a multi-target multi-drug
scheme, many drugs with potential for repurposing are being
identified and being entered into advanced phases of clinical trials.
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Repurposed drugs have already proven their effectiveness in
shortening treatment durations and providing alternatives in the
treatment of drug-resistant cases. Efforts to repurpose safe,
inexpensive, and widely available drugs should continue if we
aim to deliver the anti-TB therapies required by many who would
not otherwise have access to a cure.
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