11 research outputs found

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Evidence for the associated production of a W boson and a top quark in ATLAS at √s = 7 TeV

    Get PDF
    Contains fulltext : 103353.pdf (preprint version ) (Open Access

    Glass transition under confinement-what can be learned from calorimetry

    No full text
    Calorimetry is an effective analytical tool to characterize the glass transition and phase transitions under confinement. Calorimetry offers a broad dynamic range regarding heating and cooling rates, including isothermal and temperature modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of calorimeters. The broad dynamic range, comparable to dielectric spectroscopy, is especially of interest for the study of kinetically controlled processes like crystallization or glass transition. Accuracy of calorimetric measurements is not very high. Commonly it does not reach 0.1% and often accuracy is only a few percent. Nevertheless, calorimetry can reach high sensitivity and reproducibility. Both are of particular interest for the study of confined systems. Low addenda heat capacity chip calorimeters are capable to measure the step in heat capacity at the glass transition in nanometer thin films. The good reproducibility is used for the study of glass forming materials confined by nanometer sized structures, like porous glasses, semicrystalline structures, nanocomposites, phase separated block copolymers, etc. Calorimetry allows also for the frequency dependent measurement of complex heat capacity in a frequency range covering several orders of magnitude. Here I exclusively consider calorimetry and its application to glass transition in confined materials. In most cases calorimetry reveals only a weak dependence of the glass transition temperature on confinement as long as the confining dimensions are above 10 nm. Why these findings contradict many other studies applying other techniques to similar systems is still an unsolved problem of glass transition in confinement

    Glass transition under confinement-what can be learned from calorimetry

    No full text

    Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at s=7\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton-proton collisions at sqrt(s) = 7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb-1 event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particles' mean lifetime

    Search for the Higgs boson in the H→WW→ℓΜH\rightarrow WW \rightarrow \ell\nujj decay channel at s=7\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search for the Standard Model Higgs boson has been performed in the H -> WW -> lvjj channel using 4.7 fb(-1) of pp collision data recorded at a centre-of-mass energy of root s = 7 TeV with the ATLAS detector at the Large Hadron Collider. Higgs boson candidates produced in association with zero, one or two jets are included in the analysis to maximize the acceptance for both gluon fusion and weak boson fusion Higgs boson production processes. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range 300 GeV WW produced in association with zero or one jet is 2.2 pb (1.9 pb), corresponding to 1.9 (1.6) times the Standard Model prediction. In the Higgs boson plus two jets channel, which is more sensitive to the weak boson fusion process, the observed (expected) 95% confidence level upper bound on the cross section for H -> WW production with m(H) = 400 GeV is 0.7 pb (0.6 pb), corresponding to 7.9 (6.5) times the Standard Model prediction. (C) 2012 CERN

    Search for a heavy Standard Model Higgs boson in the channel H→ZZ→l+l−qqˉH\rightarrow ZZ\rightarrow l^{+}l^{-} q\bar{q} using the ATLAS detector

    Get PDF
    A search for a heavy Standard Model Higgs boson decaying via H->ZZ->llqq, where l=e,mu, is presented. The search is performed using a data set of pp collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 1.04 fb^-1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.Comment: 11 pages plus author list (26 pages total), 4 figures, 1 table, final version to appear in Physics Letters

    Charged-particle multiplicities in <i>pp</i> interactions at &#8730;s = 900 GeV measured with the ATLAS detector at the LHC

    No full text
    The first measurements from proton–proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |η|&#60;2.5 and pT&#62;500 MeV. The measurements are compared to Monte Carlo models of proton–proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at η=0 is measured to be1.333&#177;0.003(stat.)&#177;0.040(syst.), which is 5–15% higher than the Monte Carlo models predict

    Measurement of the isolated diphoton cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    No full text
    15 pages plus author list (27 pages total), 9 figures, 2 tables, submitted to Phys. Rev. DThe ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD
    corecore