PUBLISHED VERSION

ATLAS Collaboration
Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector
Physics Letters B, 2013; 721:32-50
© 2013 CERN. Published by Elsevier B.V. All rights reserved.
The electronic version of this article is the complete one and can be found online at: http://www.sciencedirect.com/science/article/pii/S0370269313002141

PERMISSIONS

http://www.sciencedirect.com/science/article/pii/S0370269313002141
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
$3^{\text {rd }}$ May 2013
http://hdl.handle.net/2440/77352

Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector ${ }^{\hat{}} \mathrm{T}$

ATLAS Collaboration*

ARTICLE INFO

Article history:

Received 1 October 2012
Received in revised form 12 February 2013
Accepted 28 February 2013
Available online 13 March 2013
Editor: H. Weerts

Abstract

A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ centre-of-mass energy, with the ATLAS detector at the LHC. In a $1.9 \mathrm{fb}^{-1}$ event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particles' mean lifetime.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

A search is presented for long-lived neutral particles decaying to final states containing collimated muon pairs in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ centre-of-mass energy. The event sample, collected during 2011 at the LHC with the ATLAS detector, corresponds to an integrated luminosity of $1.9 \mathrm{fb}^{-1}$. The model considered in this analysis consists of a Higgs boson decaying to a new hidden sector of particles which finally produce two sets of collimated muon pairs, but the search described is equally valid for other, distinct models such as heavier Higgs boson doublets or singlet scalars, produced through gluon fusion, that decay to a hidden sector and eventually produce collimated muon pairs.

Recently, evidence for the production of a boson with a mass of about 126 GeV has been published by ATLAS [1] and CMS [2]. The observation is compatible with the expected production and decay of the Standard Model (SM) Higgs boson [3-5] at this mass. Testing the SM Higgs hypothesis is currently of utmost importance. To this end two effects may be considered: (i) additional resonances which arise in an extended Higgs sector found in many extensions of the SM, or (ii) rare Higgs boson decays which may deviate from those predicted by the SM. In this Letter we search for a scalar, produced through gluon fusion, that decays to a light hidden sector, according to the topology of Fig. 1, focusing on the 100 GeV to 140 GeV mass range.

The phenomenology of light hidden sectors has been studied extensively over the past few years [6-10]. Possible characteristic topological signatures of such extensions of the SM are "lepton jets". A lepton jet is a cluster of highly collimated particles: electrons, muons and possibly pions [7,11-13]. These arise if light un-

[^0]stable particles with masses in the MeV to GeV range (for example dark photons, γ_{d}) reside in the hidden sector and decay predominantly to SM particles. At the LHC, hidden-sector particles may be produced with large boosts, causing the visible decay products to form jet-like structures. Hidden-sector particles such as γ_{d} may be long-lived, resulting in decay lengths comparable to, or larger than, the detector dimensions. The production of lepton jets can occur through various channels. For instance, in supersymmetric models, the lightest visible superpartner may decay into the hidden sector. Alternatively, a scalar particle that couples to the visible sector may also couple to the hidden sector through Yukawa couplings or the scalar potential. This analysis is focused on the case where the Higgs boson decays to the hidden sector [14,15]. The SM Higgs boson has a narrow width into SM final states if $m_{H}<2 m_{W}$. Consequently, any new (non-SM) coupling to additional states, which reside in a hidden sector, may contribute significantly to the Higgs boson decay branching ratios. Even with new couplings, the total Higgs boson width is typically small, well below the order of one GeV . If a SM-like Higgs boson is confirmed, it will remain important to constrain possible rare decays, e.g. into lepton jets.

Neutral particles with large decay lengths and collimated final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the detector. Collimated particles in the final state can be hard to disentangle due to the finite granularity of the detectors; moreover, in the absence of inner tracking detector information and a primary vertex constraint, it is difficult to reconstruct charged-particle tracks from decay vertices far from the interaction point (IP). The ATLAS detector [16] is equipped with a muon spectrometer (MS) with high-granularity tracking detectors that allow chargedparticle tracks to be reconstructed in a standalone configuration using only the muon detector information (MS-only). This is a crucial feature for detecting muons not originating from the primary interaction vertex.

Fig. 1. Schematic picture of the Higgs boson decay chain, $H \rightarrow 2\left(f_{d 2} \rightarrow f_{d 1} \gamma_{d}\right)$. The Higgs boson decays to two hidden fermions ($f_{d 2}$). Each hidden fermion decays to a γ_{d} and to a stable hidden fermion ($f_{d 1}$), resulting in two muon jets from the γ_{d} decays in the final state.

The search presented in this Letter focuses on neutral particles decaying to the simplest type of muon jets (MJs), containing only two muons; prompt MJ searches have been performed both at the Tevatron $[17,18]$ and at the LHC [19]. Other searches for displaced decays of a light Higgs boson to heavy fermion pairs have also been performed at the LHC [20].

The benchmark model used for this analysis is a simplified scenario where the Higgs boson decays to a pair of neutral hidden fermions ($f_{d 2}$) each of which decays to one long-lived γ_{d} and one stable neutral hidden fermion $\left(f_{d 1}\right)$ that escapes the detector unnoticed, resulting in two lepton jets from the γ_{d} decays in the final state (see Fig. 1). The mass of the $\gamma_{d}(0.4 \mathrm{GeV})$ is chosen to provide a sizeable branching ratio to muons [14].

2. The ATLAS detector

ATLAS is a multi-purpose detector [16] at the LHC, consisting of an inner tracking system (ID) embedded in a superconducting solenoid, which provides a 2 T magnetic field parallel to the beam direction, electromagnetic and hadronic calorimeters and a muon spectrometer using three air-core toroidal magnet systems. ${ }^{1}$ The trigger system has three levels [21] called Level-1 (L1), Level-2 (L2) and Event Filter (EF). L1 is a hardware-based system using information from the calorimeter and muon spectrometer, and defines one or more Regions of Interest (ROIs), geometrical regions of the detector, identified by (η, ϕ) coordinates, containing interesting physics objects. L2 and the EF (globally called the High Level Trigger, HLT) are software-based systems and can access information from all sub-detectors. The ID, consisting of silicon pixel and micro-strip detectors and a straw-tube tracker, provides precision tracking of charged particles for $|\eta| \leqslant 2.5$. The electromagnetic and hadronic calorimeter system covers $|\eta| \leqslant 4.9$ and, at $\eta=0$, has a total depth of 9.7 interaction lengths (22 radiation lengths in the electromagnetic part). The MS provides trigger information ($|\eta| \leqslant 2.4$) and momentum measurements $(|\eta| \leqslant 2.7)$ for charged particles entering the spectrometer. It consists of one barrel and two endcap parts, each with 16 sectors in ϕ, equipped with precision tracking chambers and fast detectors for triggering. Monitored drift tubes are used for precision tracking in the region $|\eta| \leqslant 2.0$ and cathode strip chambers are used for $2.0 \leqslant|\eta| \leqslant 2.7$. The MS detectors are arranged in three stations of increasing distance from the IP: inner, middle and outer. The air core toroidal magnetic field allows an accurate charged particle reconstruction independent of the ID information. The three planes of trigger chambers (resistive

[^1]Table 1
Parameters used for the Monte Carlo simulation. The last column is the γ_{d} mean lifetime τ multiplied by the speed of light c, expressed in mm .

Higgs mass $[\mathrm{GeV}]$	$m_{f_{d 2}}$	$m_{f_{d 1}}$ $[\mathrm{GeV}]$	$[\mathrm{GeV}]$	γ_{d} mass
$[\mathrm{GeV}]$	$\mathrm{c} \tau$			
100	5.0	2.0	0.4	$[\mathrm{~mm}]$
140	5.0	2.0	0.4	47

plate chambers in the barrel and thin gap chambers in the endcaps) are located in middle and outer (only in the barrel) stations. The L1 muon trigger requires hits in the middle stations to create a low transverse momentum (p_{T}) muon ROI or hits in both the middle and outer stations for a high p_{T} ROI. The muon ROIs have a spatial extent of $0.2 \times 0.2(\Delta \eta \times \Delta \phi)$ in the barrel and of 0.1×0.1 in the endcap. L1 ROI information seeds, at HLT level, the reconstruction of muon momenta using the precision chamber information. In this way sharp trigger thresholds up to 40 GeV can be obtained.

3. Signal and background simulation

The set of parameters used to generate the signal Monte Carlo samples is listed in Table 1. The Higgs boson is generated through the gluon-gluon fusion production mechanism which is the dominant process for a low mass Higgs boson. The gluon-gluon fusion Higgs boson production cross section in $p p$ collisions at $\sqrt{s}=$ 7 TeV , estimated at the next-to-next-to-leading order (NNLO) [22], is $\sigma_{\mathrm{SM}}=24.0 \mathrm{pb}$ for $m_{H}=100 \mathrm{GeV}$ and $\sigma_{\mathrm{SM}}=12.1 \mathrm{pb}$ for $m_{H}=$ 140 GeV . The PYTHIA generator [23] is used, linked together with MadGraph4.4.2 [24] and BRIDGE [25], for gluon-gluon fusion production of the Higgs boson and the subsequent decay to hidden-sector particles.

As discussed in the introduction, the signal is chosen to enable a study of rare, non-SM, Higgs boson decays in the (possibly extended) Higgs sector. To do so we choose two points which envelope a mass range covering the 126 GeV resonance. The lower mass point, $m_{H}=100 \mathrm{GeV}$, is chosen to be compatible with the decay-mode-independent search by OPAL at LEP [26]. The higher mass point, $m_{H}=140 \mathrm{GeV}$, is chosen well below the $W W$ threshold, where a sizeable branching ratio into a hidden sector may be naturally achieved. The masses of $f_{d 2}$ and $f_{d 1}$ are chosen to be light relative to the Higgs boson mass, and far from the kinematic threshold at $m_{f_{d 1}}+m_{\gamma_{d}}=m_{f_{d 2}}$. For the chosen dark photon mass $(0.4 \mathrm{GeV})$, the γ_{d} decay branching ratios are expected to be [14]: $45 \% e^{+} e^{-}, 45 \% \mu^{+} \mu^{-}, 10 \% \pi^{+} \pi^{-}$. Thus 20% of the Higgs $H \rightarrow \gamma_{d} \gamma_{d}+X$ decays are expected to have the required four-muon final state.

The mean lifetime τ of the γ_{d} (expressed throughout this Letter as τ times the speed of light c) is a free parameter of the model. In the generated samples $c \tau$ is chosen so that a large fraction of the decays occur inside the sensitive ATLAS detector volume, i.e. up to 7 m in radius and 13 m along the z-axis, where the trigger chambers of the middle stations are located. The detection efficiency can then be estimated for a range of γ_{d} mean lifetimes through re-weighting of the generated samples.

Potential backgrounds include all the processes which lead to real prompt muons in the final state such as the SM processes $W+$ jets, $Z+$ jets, $t \bar{t}, W W, W Z$, and $Z Z$. However, the main contribution to the background is expected from processes giving a high production rate of secondary muons which do not point to the primary vertex, such as decays in flight of K / π and heavy flavour decays in multi-jet processes, or muons due to cosmic rays. The prompt lepton background samples are generated using PYTHIA ($W+$ jets, and $Z+$ jets) and MC@NLO [27] ($t \bar{t}, W W, W Z$, and $Z Z$).

Fig. 2. ΔR distribution between the two muons from the γ_{d} decay for the signal Monte Carlo samples with $m_{H}=100 \mathrm{GeV}$ and $m_{H}=140 \mathrm{GeV}$.

The generated Monte Carlo events are processed through the full ATLAS simulation chain based on GEANT4 [28,29]. Additional pp interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are reweighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray background is also evaluated from data.

4. The kinematics of the signal

The main kinematic characteristics of the signal sample are:

- The γ_{d} pair are emitted approximately back-to-back in ϕ, with an angular spread of the distribution due to the emission of the $f_{d 1}$.
- The average $p_{\text {T }}$ of the γ_{d} in the laboratory frame is about 20 GeV for $m_{H}=100 \mathrm{GeV}$ and 30 GeV for $m_{H}=140 \mathrm{GeV}$; due to the small mass of the γ_{d}, large boost factors in the decay length should be expected.
- Fig. 2 shows the distribution of $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$ between the two muons from the γ_{d} decay. The ΔR is computed at the decay vertex of the γ_{d} from the vector momenta of the two muons. Due to the small mass of the γ_{d} the ΔR is almost always below 0.1.

Since the two $f_{d 1}$ are, like the two γ_{d}, emitted back-to-back in ϕ, the observed missing transverse momentum $E_{T}^{\text {miss }}$, computed at the event-generator level, is small and cannot be used as a discriminating variable against the background.

5. Data samples and trigger selection

The dataset used for this analysis was collected at a centre-ofmass energy of 7 TeV during the first part of 2011, where a low level of pile-up events in the same bunch-crossing was present (an average of ≈ 6 interactions per crossing). ${ }^{2}$ Only periods in which all ATLAS subdetectors were operational are used. The total integrated luminosity used is $1.94 \pm 0.07 \mathrm{fb}^{-1}$ [30,31]. All events are required to have at least one reconstructed vertex along the beam line with at least three associated tracks, each with $p_{\mathrm{T}} \geqslant 0.4 \mathrm{GeV}$. The primary interaction vertex is defined to be the vertex whose constituent tracks have the largest $\sum p_{\mathrm{T}}^{2}$. This analysis deals with displaced γ_{d} decays with final states containing only muons. Signal events are therefore characterized by a four-muon final state

[^2]with the four muons coming from two displaced decay vertices. Due to the relatively low $p_{\text {T }}$ of the muons and due to the displaced decay vertex, a low- p_{T} multi-muon trigger with muons reconstructed only in the MS is needed. In order to have an acceptably low trigger rate at a low $p_{\text {T }}$ threshold, a multiplicity of at least three muons is required. Candidate events are collected using an unprescaled HLT trigger with three reconstructed muons of $p_{\mathrm{T}} \geqslant 6 \mathrm{GeV}$, seeded by a L1-accept with three different muon ROIs. These muons are reconstructed only in the MS, since muons originating from a neutral particle decaying outside the pixel detector will not have a matching track in the ID tracking system. The trigger efficiency for the Monte Carlo signal samples, defined as the fraction of events passing the trigger requirement with respect to the events satisfying the analysis selection criteria (described in Section 6) is $0.32 \pm 0.01_{\text {stat }}$ for $m_{H}=100 \mathrm{GeV}$ and $0.31 \pm 0.01_{\text {stat }}$ for $m_{H}=140 \mathrm{GeV}$.

The main reason for the relatively low trigger efficiency is the small opening ΔR between the two muons of the γ_{d} decay ($\Delta R \leqslant$ 0.1) shown in Fig. 2. These values of ΔR are often smaller than the L1 trigger granularity; in this case the L1 produces only one ROI. The trigger only fires if at least one of the γ_{d} produces two distinct L1 ROIs. The single γ_{d} ROI efficiency, $\varepsilon_{2 \text { ROI }}\left(\varepsilon_{1 \text { ROI }}\right)$, defined as the fraction of γ_{d} passing the offline selection that give two (one) trigger ROIs is $0.296 \pm 0.004_{\text {stat }}\left(0.626 \pm 0.004_{\text {stat }}\right)$ for $m_{H}=100 \mathrm{GeV}$ and $0.269 \pm 0.003_{\text {stat }}\left(0.653 \pm 0.003_{\text {stat }}\right)$ for $m_{H}=140 \mathrm{GeV}$. Fig. 3 shows the $\varepsilon_{2 \text { ROI }}$ as a function of the dark photon η and of the ΔR of the two muons from the γ_{d} decay. The increased trigger granularity in the endcap and the efficiency decrease at small values of ΔR are clearly visible.

The systematic uncertainty on the trigger efficiency is estimated with a sample of $J / \psi \rightarrow \mu^{+} \mu^{-}$from collision data and a corresponding sample of Monte Carlo events, using the tag-and-probe (TP) method. A cut on $\Delta R \leqslant 0.1$ between the two muons is used to reproduce the small track-to-track spatial separation in the MS of the signal. The tag is a (MS + ID) combined muon, defined as a MS-reconstructed muon that is associated with a trigger object and combined with a matching "good ID track". Good ID tracks must have at least one hit in the pixel detector, at least six hits in the silicon micro-strip detectors and at least six hits in the strawtube tracker. The probe is a good ID track which, when combined with the tag track, gives an invariant mass inside a 100 MeV window around the J / ψ mass. A muon ROI that matches the probe in η and ϕ, and is different from the ROI associated with the tag, is searched for. The number of probes with a matched ROI divided by the number of probes without a matched ROI gives the $\varepsilon_{2 \mathrm{ROI}}^{\mathrm{TP}} / \varepsilon_{1 \mathrm{ROI}}^{\mathrm{TP}}$ ratio. Values of $\varepsilon_{2 \mathrm{ROI}}^{\mathrm{TP}} / \varepsilon_{1 \mathrm{ROI}}^{\mathrm{TP}}=0.42 \pm 0.05_{\text {stat }}$ for the $J / \psi \rightarrow \mu^{+} \mu^{-}$data and $\varepsilon_{2 \mathrm{ROI}}^{\mathrm{TP}} / \varepsilon_{1 \mathrm{ROI}}^{\mathrm{TR}}=0.39 \pm 0.05_{\text {stat }}$ for the corresponding Monte Carlo sample are obtained. The relative statistical uncertainty on the difference between these two estimates is 17% and this is taken conservatively to be the systematic uncertainty on the trigger efficiency.

6. Muon Jet reconstruction and event selection

MJs from displaced γ_{d} decays are characterized by a pair of muons in a narrow cone, produced away from the primary vertex of the event. Consequently tracks reconstructed in the MS with a good quality track fit [32] are used. MJs are identified using a simple clustering algorithm that associates all the muons in cones of $\Delta R=0.2$, starting with the muon with highest p_{T}. The size of the cone takes into account the multiple scattering of the muons in the calorimeters. All the muons found in the cone are associated with a MJ. After this procedure, if any muons are unassociated with a MJ the search is repeated for this remainder, starting again with the highest p_{T} muon. This continues until all possible MJs

Fig. 3. $\varepsilon_{2 \text { ROI }}$ as a function (a) of the η of the γ_{d} and (b) of the ΔR of the muon pair for the Monte Carlo samples with Higgs boson masses of 100 GeV and 140 GeV . The errors are statistical only.
are formed. The MJ direction and momentum are obtained from the vector sum over all muons in the MJ. Only MJs with two reconstructed muons are accepted and only events with two MJs are kept for the subsequent analysis. In order to keep the search as model independent as possible no requirement on the muon momenta has been introduced.

The possible contribution to the background of SM processes which lead to real prompt muon pairs in the final state is evaluated using simulated samples. After the trigger and the requirement of having two MJs in the event, their contributions have been found to be negligible. The only significant background sources are expected to be from processes giving a high production rate of secondary muons which do not point to the primary vertex, such as decays in flight of K / π and heavy flavour decays in multi-jet production, or cosmic-ray muons not pointing to the primary vertex.

In order to separate the signal from the background, a number of discriminating variables have been studied. The multi-jet background can be significantly reduced by using calorimeter isolation requirements around the MJ direction. The calorimetric isolation variable $E_{\mathrm{T}}^{\text {isol }}$ is defined as the difference between the transverse calorimetric energy E_{T} in a cone of $\Delta R=0.4$ around the highest p_{T} muon of the MJ and the E_{T} in a cone of $\Delta R=0.2$; a cut $E_{\mathrm{T}}^{\text {isol }} \leqslant 5 \mathrm{GeV}$ keeps almost all the signal. The isolation modelling is validated for real isolated muons with a sample of muons coming from $Z \rightarrow \mu \mu$ decays. To further improve the signal-to-background ratio, two additional discriminating variables are used: $\Delta \phi$ between the two MJs and $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ for the MJ, defined as the scalar sum of the transverse momentum of the tracks, measured in the ID, inside a cone $\Delta R=0.4$ around the direction of the MJ . The muon tracks of the MJ in the ID, if any, are not removed from the isolation sum, so that prompt muons, which give a reconstructed track in both the ID and MS, will contribute to the $\sum p_{\mathrm{T}}^{\mathrm{D}}$. As a consequence a cut on $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ of a few GeV will remove prompt MJs or MJs with very short decay length.

For the background coming from cosmic-ray muons (mainly pairs of almost parallel cosmic-ray muons crossing the detector) a cut on the impact parameters of the muon tracks with respect to the primary interaction vertex is used.

The final set of selection criteria used is the following:

- Topology cut: events are required to have exactly two MJs, $N_{\mathrm{MJ}}=2$.
- MJ isolation: require MJ isolation with $E_{\mathrm{T}}^{\mathrm{isol}} \leqslant 5 \mathrm{GeV}$ for both MJs in the event.
- Require $|\Delta \phi| \geqslant 2$ between the two MJs.
- Require opposite charges for the two muons in a $\mathrm{MJ}\left(Q_{\mathrm{MJ}}=0\right)$.
- Require a cut on the transverse and longitudinal impact parameters of the muons with respect to the primary vertex: $\left|d_{0}\right|<200 \mathrm{~mm}$ and $\left|z_{0}\right|<270 \mathrm{~mm}$.
- Require $\sum p_{\mathrm{T}}^{\mathrm{ID}}<3 \mathrm{GeV}$ for both MJs.

The distributions of the relevant variables used in the selection before each step of the cut flow are shown in Fig. 4. The results are summarized in Table 2. No events survive the selection in the data sample whereas the expected signals from Monte Carlo simulation, assuming the Higgs boson SM production cross section, 100\% branching ratio for $H \rightarrow \gamma_{d} \gamma_{d}+X$ and the parameters given in Table 1, are 75 or 48 events for Higgs boson masses of 100 GeV and 140 GeV respectively. The method used to estimate the cosmic-ray and multi-jet background yields, quoted in Table 2, is discussed in Section 7.

The resulting single γ_{d} reconstruction efficiency for the mean lifetimes given in Table 1 is shown in Fig. 5 as a function of η, the ΔR separation of the two muons from the γ_{d} decay and the decay length in the transverse plane, $L_{x y}$, of the γ_{d}. The efficiency is defined as the number of γ_{d} passing the offline selection divided by the number of γ_{d} in the spectrometer acceptance $(|\eta| \leqslant 2.4)$ with both muons having $p_{\mathrm{T}} \geqslant 6 \mathrm{GeV}$. The low reconstruction efficiency at very short $L_{x y}$ is a consequence of the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ cut.

The systematic uncertainty on the reconstruction efficiency is evaluated using a tag-and-probe method by comparing the reconstruction efficiency $\varepsilon_{\text {rec }}^{\mathrm{TP}}$ for $J / \psi \rightarrow \mu^{+} \mu^{-}$samples from collision data and $J / \psi \rightarrow \mu^{+} \mu^{-}$Monte Carlo simulation. The tag-andprobe definitions and the cut on $\Delta R \leqslant 0.1$ between the two muons are the same as in Section 5. To measure the reconstruction efficiency the ID probe track is associated with a MS-only muon track, different from the one associated with the tag. The result is shown in Fig. 6.

The relative difference between the result obtained from the $J / \psi \rightarrow \mu^{+} \mu^{-}$data and the $J / \psi \rightarrow \mu^{+} \mu^{-}$Monte Carlo sample in the same range of $\Delta R \leqslant 0.1$, as for the signal, is taken as the systematic uncertainty on the reconstruction efficiency and amounts to 13%.

7. Multi-jet and cosmic-ray background evaluation

To estimate the multi-jet background contamination in the signal region we use a data-driven $A B C D$ method slightly modified to cope with the problem of the very low number of events in the control regions. The ABCD method assumes that two variables can be identified, which are relatively uncorrelated, and which can each be used to separate signal and background. It is assumed that the multi-jet background distribution can be factorized in the $\mathrm{MJ} E_{\mathrm{T}}^{\text {isol }}-|\Delta \phi|$ plane. The region A is defined by $E_{\mathrm{T}}^{\text {isol }} \leqslant 5 \mathrm{GeV}$ and $|\Delta \phi|<2$; the region B , defined by $E_{\mathrm{T}}^{\text {isol }} \leqslant 5 \mathrm{GeV}$ and $|\Delta \phi| \geqslant 2$, is the signal region. The regions C and D are the anti-isolated regions ($E_{\mathrm{T}}^{\text {isol }}>5 \mathrm{GeV}$) and they are defined by $|\Delta \phi|<2$ and $|\Delta \phi| \geqslant 2$, respectively. Neglecting the signal contamination in regions A, C and

 histogram is the signal Monte Carlo normalized to $1.9 \mathrm{fb}^{-1}$. The uncertainties are statistical only.

Table 2

 sections at the two mass values and 100% branching ratio of $H \rightarrow \gamma_{d} \gamma_{d}+X$. The first uncertainties are statistical and the second systematic.

Cut	Cosmic-rays	Multi-jet	Total background	$m_{H}=100 \mathrm{GeV}$	$m_{H}=140 \mathrm{GeV}$	Data
$N_{\text {MJ }}=2$	3.0 ± 2.1	N/A	N/A	$135 \pm 11_{-21}^{+29}$	$90 \pm 9_{-13}^{+17}$	871
$E_{\mathrm{T}}^{\text {isol }} \leqslant 5 \mathrm{GeV}$	3.0 ± 2.1	N/A	N/A	$132 \pm 11_{-21}^{+28}$	$88 \pm 9_{-13}^{+17}$	219
$\|\Delta \phi\| \geqslant 2$	1.5 ± 1.5	$153 \pm 18 \pm 9$	$155 \pm 18 \pm 9$	$123 \pm 11_{-19}^{+26}$	$81 \pm 9_{-12}^{+15}$	104
$Q_{M J}=0$	1.5 ± 1.5	$57 \pm 15 \pm 22$	$59 \pm 15 \pm 22$	$121 \pm 11_{-19}^{+26}$	$79 \pm 8_{-12}^{+15}$	80
$\left\|d_{0}\right\|,\left\|z_{0}\right\|$	$0_{-0}^{+1.64}$	$111 \pm 39 \pm 63$	$111 \pm 39 \pm 63$	$105 \pm 10_{-16}^{+22}$	$66 \pm 8_{-10}^{+12}$	70
$\sum p_{\mathrm{T}}^{\mathrm{ID}}<3 \mathrm{GeV}$	$0_{-0}^{+1.64}$	$0.06 \pm 0.02_{-0.06}^{+0.66}$	$0.06{ }_{-0.02-0.06}^{+1.64+0.66}$	$75 \pm 9_{-12}^{+16}$	$48 \pm 7_{-7}^{+9}$	0

D ($E_{\mathrm{T}}^{\text {isol }}>5 \mathrm{GeV}$ or $|\Delta \phi|<2$) the number of multi-jet background events in the signal region can be evaluated as $N_{B}=N_{D} \times N_{A} / N_{C}$. Due to the very low number of events in the control regions the values of N_{A}, N_{C} and N_{D} as a function of the cut on the final discriminant variable $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ are extracted by modelling the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ distributions with bifurcated Gaussian templates, with parameters fitted from the data in the corresponding regions, and by integrating the fitted function in the range $0<\sum p_{\mathrm{T}}^{\mathrm{ID}}<3 \mathrm{GeV}$. The low statistics in the four regions at each step of the cut flow results in large fluctuations in the multi-jet background estimate; however, the expected contribution to the final number of background events is negligible and the statistical uncertainty on the data driven background is included in the systematic. The extracted yields are $N_{A}=\left(7.1 \pm 1.5_{\text {stat }}\right) \cdot 10^{-3}, N_{C}=\left(1.81 \pm 1.0_{\text {stat }}\right) \cdot 10^{-2}$ and $N_{D}=\left(1.51 \pm 0.07_{\text {stat }}\right) \cdot 10^{-1}$ and the estimated number of multi-jet background events in the signal region is $N_{B}=0.06 \pm 0.02_{\text {stat }}$.

Possible sources of systematic uncertainty related to the background estimation method are also evaluated. Various functional models are used to fit the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ distributions, trying extreme functional forms from linear distribution to bifurcate Gaussian in order to get an estimate of the uncertainty on the number of multi-jet background events in each control region. The procedure to estimate the number of multi-jet background events in the signal region is then repeated. The maximum variation in N_{B} is taken as the systematic uncertainty, that amounts to ${ }_{-0.06}^{+0.66}$. The effect of possible signal leakage in the background regions is also considered and is found to be negligible.

The background induced by muons from cosmic-ray showers is evaluated using events collected by the trigger being active when there are no collisions (empty bunch crossings). The number of triggered events is rescaled by the collision to empty bunch crossing ratio and for the active time (since the trigger in the empty bunch crossing was not active in all the runs). No events survived the requirements on the impact parameters with respect to the primary vertex ($\left|d_{0}\right|<200 \mathrm{~mm}$ and $\left|z_{0}\right|<270 \mathrm{~mm}$), resulting in a
cosmic-ray contamination estimate of $0_{-0}^{+1.64}$. The final yields for the different background sources are summarized in Table 2.

8. Systematic uncertainties

The following effects are considered as possible sources of systematic uncertainty:

- Luminosity

The overall normalization uncertainty of the integrated luminosity is 3.7% [30,31].

- Muon momentum resolution

The systematic uncertainty on the muon momentum resolution for MS-only muons has been evaluated by smearing and shifting the momenta of the muons by scale factors derived from $Z \rightarrow \mu \mu$ data-Monte Carlo comparison, and by observing the effect of this shift on the signal efficiency. The overall effect of the muon momentum resolution uncertainty is negligible.

- Trigger

The systematic uncertainty on the single γ_{d} trigger efficiency, evaluated using a tag-and-probe method is 17% (see Section 5).

- Reconstruction efficiency

The systematic uncertainty on the reconstruction efficiency, evaluated using a tag-and-probe method for the single γ_{d} reconstruction efficiency, is 13% (see Section 6).

- Effect of pile-up

The systematic uncertainty on the signal efficiency related to the effect of pile-up is evaluated by comparing the number of signal events after imposing all the selection criteria on the signal Monte Carlo sample increasing the average number of interactions per crossing from ≈ 6 to ≈ 16. This systematic uncertainty is negligible.

Fig. 5. γ_{d} reconstruction efficiency $\varepsilon_{\text {rec }}$ as a function (a) of η, (b) of ΔR and (c) of the transverse decay length of the γ_{d} for $m_{H}=100 \mathrm{GeV}$ and $m_{H}=140 \mathrm{GeV}$ and for the mean lifetimes given in Table 1. The reconstruction efficiency is defined as the number of γ_{d} passing the offline selection divided by the number of γ_{d} in the spectrometer acceptance $(|\eta| \leqslant 2.4)$ with both muons having $p_{\mathrm{T}} \geqslant 6 \mathrm{GeV}$. The uncertainties are statistical only.

Fig. 6. Tag-and-probe reconstruction efficiency $\varepsilon_{\text {rec }}^{\mathrm{TP}}$ as a function of the ΔR between the two muons, evaluated on a sample of $J / \psi \rightarrow \mu^{+} \mu^{-}$from collision data and a corresponding sample of Monte Carlo events. The $\varepsilon_{\text {rec }}^{\mathrm{TP}}$ for the signal Monte Carlo, evaluated with a similar tag-and-probe method, is also shown. The uncertainties are statistical only.

Table 3
Ranges in which $\gamma_{d} c \tau$ is excluded at $95 \% C L$ for $m_{H}=100 \mathrm{GeV}$ and $m_{H}=140 \mathrm{GeV}$, assuming 100% and 10% branching ratio of $H \rightarrow \gamma_{d} \gamma_{d}+X$ and the SM Higgs boson production cross section.

Higgs boson mass $[\mathrm{GeV}]$	Excluded $c \tau[\mathrm{~mm}]$	Excluded $c \tau[\mathrm{~mm}]$
100	$\mathrm{BR}(100 \%)$	$\mathrm{BR}(10 \%)$
140	$1 \leqslant c \tau \leqslant 670$	$5 \leqslant c \tau \leqslant 159$

- Effect of $\sum \boldsymbol{p}_{\mathrm{T}}^{\mathrm{ID}}$ cut

Since the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ cut could affect the minimum $\mathrm{c} \tau$ value that can be excluded, the effect of this cut on the signal Monte Carlo has been studied. A variation of 10% on the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ cut results in a relative variation of $<1 \%$ on the signal, which can therefore be neglected.

- Background evaluation

The systematic uncertainties that can affect the background estimation are related to the data-driven method used. The functional model used to fit the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ distribution is varied to evaluate the systematic uncertainty in the modelling of its shape, which also includes the effect of the $\sum p_{\mathrm{T}}^{\mathrm{ID}}$ cut on the background estimation. This systematic uncertainty amounts to ${ }_{-0.06}^{+0.66}$ events. The effect of signal leakage is also negligible.

9. Results and interpretation

The efficiency of the selection criteria described above is evaluated for the simulated signal samples (see Table 1) as a function of the mean lifetime of the γ_{d}. The signal Monte Carlo events are weighted by the detection probability of the two γ_{d} in the various parts of the detector, generating their decay points according to a chosen value of the γ_{d} lifetime, with $c \tau$ ranging from 0 to 700 mm . In this way the number of expected signal events is predicted as function of the γ_{d} mean lifetime. These numbers, together with the expected number of background events (multi-jet and cosmic rays) and taking into account the zero data events surviving the selection criteria in $1.9 \mathrm{fb}^{-1}$, are used as input to obtain limits at the 95% confidence level (CL). The CLs method [33] is used to set 95% CL upper limits on the cross section times branching ratio ($\sigma \times \mathrm{BR}$) for the process $H \rightarrow \gamma_{d} \gamma_{d}+X$, according to the model of Fig. 1. Here the branching ratio of $\gamma_{d} \rightarrow \mu \mu$ is set to 45% with the γ_{d} mass set to 0.4 GeV , as previously discussed. The $\sigma \times \mathrm{BR}$ is given as a function of the γ_{d} mean lifetime, expressed as $c \tau$ for $m_{H}=100 \mathrm{GeV}$ and $m_{H}=140 \mathrm{GeV}$. These limits are shown on Fig. 7. Table 3 shows the ranges in which the $\gamma_{d} c \tau$ is excluded at the 95% CL for $H \rightarrow \gamma_{d} \gamma_{d}+X$ branching ratios of 100% and 10%.

10. Conclusions

The ATLAS detector at the LHC was used to search for a light Higgs boson decaying into a pair of hidden fermions $\left(f_{d 2}\right)$, each of which decays to a γ_{d} and to a stable hidden fermion $\left(f_{d 1}\right)$, resulting in two muon jets from the γ_{d} decay in the final state. In a $1.9 \mathrm{fb}^{-1}$ sample of $\sqrt{s}=7 \mathrm{TeV}$ proton-proton collisions no events consistent with this Higgs boson decay mode are observed. The observed data are consistent with the Standard Model background expectations.

Limits are set on the $\sigma \times \mathrm{BR}$ to $H \rightarrow \gamma_{d} \gamma_{d}+X$, according to the model of Fig. 1, as a function of the long-lived particle mean lifetime for $m_{H}=100 \mathrm{GeV}$ and 140 GeV with the chosen γ_{d} mass that gives a decay branching ratio of 45% for $\gamma_{d} \rightarrow \mu \mu$. Assuming the SM production rate for a 140 GeV Higgs boson, its branching ratio to two hidden-sector photons is found to be below 10%, at $95 \% C L$, for hidden photon $c \tau$ in the range $7 \mathrm{~mm} \leqslant c \tau \leqslant 82 \mathrm{~mm}$. Bounds

Fig. 7. The 95% upper limits on the $\sigma \times \mathrm{BR}$ for the process $H \rightarrow \gamma_{d} \gamma_{d}+X$ as a function of the dark photon $c \tau$ for the benchmark sample with (a) $m_{H}=100 \mathrm{GeV}$ and with (b) $m_{H}=140 \mathrm{GeV}$, assuming the Higgs boson SM production cross section. The expected limit is shown as the dashed curve and the solid curve shows the observed limit. The horizontal lines correspond to the Higgs boson SM production cross sections at the two mass values.
on the $\sigma \times \mathrm{BR}$ of a 126 GeV Higgs boson may be conservatively extracted using the corresponding 140 GeV exclusion curve.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Nor-
way; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] ATLAS Collaboration, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214.
[2] CMS Collaboration, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235.
[3] F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321.
[4] P.W. Higgs, Phys. Lett. 12 (1964) 132.
[5] G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13 (1964) 585.
[6] M.J. Strassler, K.M. Zurek, Phys. Lett. B 651 (2007) 374, arXiv:hep-ph/0604261.
[7] N. Arkani-Hamed, N. Weiner, JHEP 0812 (2008) 104, arXiv:0810.0714.
[8] T. Han, Z. Si, K.M. Zurek, M.J. Strassler, JHEP 0807 (2008) 008.
[9] S. Gopalakrishna, S. Jung, J.D. Wells, Phys. Rev. D 78 (2008) 055002, arXiv: 0801.3456.
[10] M.J. Strassler, K.M. Zurek, Phys. Lett. B 661 (2008) 263, arXiv:hep-ph/0605193.
[11] M. Baumgart, C. Cheung, J.T. Ruderman, L.T. Wang, I. Yavin, JHEP 0904 (2009) 014, arXiv:0901.0283.
[12] C. Cheung, J.T. Ruderman, L.T. Wang, I. Yavin, JHEP 1004 (2010) 116, arXiv: 0909.0290.
[13] Y. Bai, Z. Han, Phys. Rev. Lett. 103 (2009) 051801, arXiv:0902.0006.
[14] A. Falkowski, J.T. Ruderman, T. Volansky, J. Zupan, JHEP 1005 (2010) 077.
[15] A. Falkowski, J.T. Ruderman, T. Volansky, J. Zupan, Phys. Rev. Lett. 105 (2010) 241801, arXiv:1007.3496.
[16] ATLAS Collaboration, JINST 3 (2008) S08003.
[17] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 103 (2009) 081802.
[18] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 105 (2010) 211802.
[19] CMS Collaboration, JHEP 1107 (2011) 098, arXiv:1106.2375.
[20] ATLAS Collaboration, Phys. Rev. Lett. 108 (2012) 251801.
[21] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1849, arXiv:1110.1530.
[22] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.), Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, CERN-2011-002, CERN, Geneva, 2011, arXiv:1101.0593.
[23] S. Mrenna, T. Sjöstrand, P.Z. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175.
[24] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 1106 (2011) 128, arXiv:1106.0522.
[25] P. Meade, M. Reece, Bridge: Branching Ratio Inquiry/Decay Generated Events, arXiv:hep-ph/0703031.
[26] G. Abbiendi, et al., OPAL Collaboration, Eur. Phys. J. C 27 (2003) 311, arXiv: hep-ex/0206022.
[27] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244.
[28] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
[29] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568.
[30] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185.
[31] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector in 2011, ATLAS-CONF-2011-116, http://cdsweb.cern. ch/record/1376384/files/ATLAS-CONF-2011-116.pdf.
[32] ATLAS Collaboration, Expected performance of the ATLAS experiment - detector, trigger and physics, arXiv:0901.0512, 2009.
[33] A.L. Read, J. Phys. G 28 (2002) 2693.

ATLAS Collaboration

G. Aad ${ }^{47}$, T. Abajyan ${ }^{20}$, B. Abbott ${ }^{110}$, J. Abdallah ${ }^{11}$, S. Abdel Khalek ${ }^{114}$, A.A. Abdelalim ${ }^{48}$, O. Abdinov ${ }^{10}$, R. Aben ${ }^{104}$, B. Abi ${ }^{111}$, M. Abolins ${ }^{87}$, O.S. AbouZeid ${ }^{157}$, H. Abramowicz ${ }^{152}$, H. Abreu ${ }^{135}$, E. Acerbi ${ }^{88 a}$, 88b, B.S. Acharya ${ }^{163 a, 163 b}$, L. Adamczyk ${ }^{37}$, D.L. Adams ${ }^{24}$, T.N. Addy ${ }^{55}$, J. Adelman ${ }^{175}$, S. Adomeit ${ }^{97}$, P. Adragna ${ }^{74}$, T. Adye ${ }^{128}$, S. Aefsky ${ }^{22}$, J.A. Aguilar-Saavedra ${ }^{123 \mathrm{~b}, a}$, M. Agustoni ${ }^{16}$, M. Aharrouche ${ }^{80}$, S.P. Ahlen ${ }^{21}$, F. Ahles ${ }^{47}$, A. Ahmad ${ }^{147}$, M. Ahsan ${ }^{40}$, G. Aielli ${ }^{132 a, 132 b}$, T. Akdogan' ${ }^{18 \mathrm{a}}$, T.P.A. Åkesson ${ }^{78}$, G. Akimoto ${ }^{154}$, A.V. Akimov ${ }^{93}$, M.S. Alam ${ }^{1}$, M.A. Alam ${ }^{75}$, J. Albert ${ }^{168}$, S. Albrand ${ }^{54}$, M. Aleksa ${ }^{29}$, I.N. Aleksandrov ${ }^{63}$, F. Alessandria ${ }^{88 \text { a }}$, C. Alexa ${ }^{25 a}$, G. Alexander ${ }^{152}$, G. Alexandre ${ }^{48}$, T. Alexopoulos ${ }^{9}$, M. Alhroob ${ }^{163 a, 163 c}$, M. Aliev ${ }^{15}$, G. Alimonti ${ }^{88 a}$, J. Alison ${ }^{119}$, B.M.M. Allbrooke ${ }^{17}$, P.P. Allport ${ }^{72}$, S.E. Allwood-Spiers ${ }^{52}$, J. Almond ${ }^{81}$, A. Aloisio ${ }^{101 \mathrm{a}}$, 101 b , R. Alon ${ }^{171}$, A. Alonso ${ }^{78}$, F. Alonso ${ }^{69}$, B. Alvarez Gonzalez ${ }^{87}$, M.G. Alviggi' ${ }^{101 a, 101 \mathrm{~b}}$, K. Amako ${ }^{64}$, C. Amelung ${ }^{22}$, V.V. Ammosov ${ }^{127,{ }^{123}}$, S.P. Amor Dos Santos ${ }^{\text {123a }}$, A. Amorim ${ }^{123 a, b}$, N. Amram ${ }^{152}$, C. Anastopoulos ${ }^{29}$, L.S. Ancu ${ }^{16}$, N. Andari ${ }^{114}$, T. Andeen ${ }^{34}$, C.F. Anders ${ }^{57 \mathrm{~b}}$, G. Anders ${ }^{57 \mathrm{a}}$, K.J. Anderson ${ }^{30}$, A. Andreazza ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, V. Andrei ${ }^{57 \mathrm{a}}$, M.-L. Andrieux ${ }^{54}$, X.S. Anduaga ${ }^{69}$, P. Anger ${ }^{43}$, A. Angerami ${ }^{34}$, F. Anghinolfi ${ }^{29}$, A. Anisenkov ${ }^{106}$, N. Anjos ${ }^{123 a}$, A. Annovi ${ }^{46}$, A. Antonaki ${ }^{8}$, M. Antonelli ${ }^{46}$, A. Antonov ${ }^{95}$, J. Antos ${ }^{143 b}$, F. Anulli ${ }^{1311 \mathrm{a}}$, M. Aoki ${ }^{100}$, S. Aoun ${ }^{82}$, L. Aperio Bella ${ }^{4}$, R. Apolle ${ }^{117, c}$, G. Arabidze ${ }^{87}$, I. Aracena ${ }^{142}$, Y. Arai ${ }^{64}$, A.T.H. Arce ${ }^{\text {² }}$, S. Arfaoui ${ }^{147}$, J.-F. Arguin ${ }^{14}$, E. Arik ${ }^{18 a, * *}$, M. Arik ${ }^{18 a}$, A.J. Armbruster ${ }^{86}$, O. Arnaez ${ }^{80}$, V. Arnal ${ }^{79}$, C. Arnault ${ }^{114}$, A. Artamonov ${ }^{94}$, G. Artoni ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, D. Arutinov ${ }^{20}$, S. Asai ${ }^{154}$,
R. Asfandiyarov ${ }^{172}$, S. Ask ${ }^{27}$, B. Åsman ${ }^{145 a}$, ${ }^{145 b}$, L. Asquith ${ }^{5}$, K. Assamagan ${ }^{24}$, A. Astbury ${ }^{168}$, M. Atkinson ${ }^{164}$, B. Aubert ${ }^{4}$, E. Auge ${ }^{114}$, K. Augsten ${ }^{126}$, M. Aurousseau ${ }^{144 a}$, G. Avolio ${ }^{162}$, R. Avramidou ${ }^{9}$, D. Axen ${ }^{167}$, G. Azuelos ${ }^{92, d}$, Y. Azuma ${ }^{154}$, M.A. Baak ${ }^{29}$, G. Baccaglioni ${ }^{88 a}$, C. Bacci ${ }^{133 a, 133 b}$, A.M. Bach ${ }^{14}$, H. Bachacou ${ }^{135}$, K. Bachas ${ }^{29}$, M. Backes ${ }^{48}$, M. Backhaus ${ }^{20}$, E. Badescu ${ }^{25 a}$, P. Bagnaia ${ }^{131 a, 131 b}$, S. Bahinipati ${ }^{2}$, Y. Bai ${ }^{32 \mathrm{a}}$, D.C. Bailey ${ }^{157}$, T. Bain ${ }^{157}$, J.T. Baines ${ }^{128}$, O.K. Baker ${ }^{175}$, M.D. Baker ${ }^{24}{ }^{\prime 4}$, S. Baker ${ }^{76}$, E. Banas ${ }^{38}$, P. Banerjee ${ }^{92}$, Sw. Banerjee ${ }^{172}$, D. Banfi ${ }^{29}$, A. Bangert ${ }^{149}$, V. Bansal ${ }^{168}$, H.S. Bansil ${ }^{17}$, L. Barak ${ }^{171}$, S.P. Baranov ${ }^{93}$, A. Barbaro Galtieri ${ }^{14}$, T. Barber ${ }^{47}$, E.L. Barberio ${ }^{85}$, D. Barberis ${ }^{49 \mathrm{a}, 49 \mathrm{~b}}$, M. Barbero ${ }^{20}$, D.Y. Bardin ${ }^{63}$, T. Barillari ${ }^{98}$, M. Barisonzi ${ }^{174}$, T. Barklow ${ }^{142}$, N. Barlow ${ }^{27}$, B.M. Barnett ${ }^{128}$, R.M. Barnett ${ }^{14}$, A. Baroncelli ${ }^{1333 a}$, G. Barone ${ }^{48}$, A.J. Barr ${ }^{117}$, F. Barreiro ${ }^{79}$, J. Barreiro Guimarães da Costa ${ }^{56}$, P. Barrillon ${ }^{114}$, R. Bartoldus ${ }^{142}$, A.E. Barton ${ }^{70}$, V. Bartsch ${ }^{148}$, A. Basye ${ }^{164}$, R.L. Bates ${ }^{52}$, L. Batkova ${ }^{143 a}$, J.R. Batley ${ }^{27}$, A. Battaglia ${ }^{16}$, M. Battistin ${ }^{29}$, F. Bauer ${ }^{135}$, H.S. Bawa ${ }^{142, e}$, S. Beale ${ }^{97}$, T. Beau ${ }^{77}$, P.H. Beauchemin ${ }^{160}$, R. Beccherle ${ }^{49 a}$, P. Bechtle ${ }^{20}$, H.P. Beck ${ }^{16}$, A.K. Becker ${ }^{174}$, S. Becker ${ }^{97}$, M. Beckingham ${ }^{137}$, K.H. Becks ${ }^{174}$, A.J. Beddall ${ }^{18 \mathrm{c}}$, A. Beddall ${ }^{18 \mathrm{C}}$, S. Bedikian ${ }^{175}$, V.A. Bednyakov ${ }^{63}$, C.P. Bee ${ }^{82}$, L.J. Beemster ${ }^{104}$, M. Begel ${ }^{24}$, S. Behar Harpaz ${ }^{151}$, P.K. Behera ${ }^{61}$, M. Beimforde ${ }^{98}$, C. Belanger-Champagne ${ }^{84}$, P.J. Bell ${ }^{48}$, W.H. Bell ${ }^{48}$, G. Bella ${ }^{152}$, L. Bellagamba ${ }^{19 a}$, F. Bellina ${ }^{29}$, M. Bellomo ${ }^{29}$, A. Belloni ${ }^{56}$, O. Beloborodova ${ }^{106, f}$, K. Belotskiy ${ }^{95}$, O. Beltramello ${ }^{29}$, O. Benary ${ }^{152}$, D. Benchekroun ${ }^{134 a}$, K. Bendtz ${ }^{145 a}, 145 \mathrm{~b}$, N. Benekos ${ }^{164}$, Y. Benhammou ${ }^{152}$, E. Benhar Noccioli ${ }^{48}$, J.A. Benitez Garcia ${ }^{158 b}$, D.P. Benjamin ${ }^{44}$, M. Benoit ${ }^{114}$, J.R. Bensinger ${ }^{22}$, K. Benslama ${ }^{129}$, S. Bentvelsen ${ }^{104}$, D. Berge ${ }^{29}$, E. Bergeaas Kuutmann ${ }^{41}$, N. Berger ${ }^{4}$, F. Berghaus ${ }^{168}$, E. Berglund ${ }^{104}$, J. Beringer ${ }^{14}$, P. Bernat ${ }^{76}$, R. Bernhard ${ }^{47}$, C. Bernius ${ }^{24}$, T. Berry ${ }^{75}$, C. Bertella ${ }^{82}$, A. Bertin ${ }^{19 a, 19 b}$, F. Bertolucci ${ }^{121 a, 121 b}$, M.I. Besana ${ }^{88 a, 88 b}$, G.J. Besjes ${ }^{103}$, N. Besson ${ }^{135}$, S. Bethke ${ }^{98}$, W. Bhimji ${ }^{45}$, R.M. Bianchi ${ }^{29}$, M. Bianco ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, O. Biebel ${ }^{97}$, S.P. Bieniek ${ }^{76}$, K. Bierwagen ${ }^{53}$, J. Biesiada ${ }^{14}$, M. Biglietti ${ }^{133 a}$, H. Bilokon ${ }^{46}$, M. Bindi ${ }^{19 a, 19 b}$, S. Binet ${ }^{114}$, A. Bingul ${ }^{18 \mathrm{c}}$, C. Bini ${ }^{131 a, 131 b}$, C. Biscarat ${ }^{177}$, B. Bittner ${ }^{98}$, K.M. Black ${ }^{21}$, R.E. Blair ${ }^{5}$, J.-B. Blanchard ${ }^{135}$, G. Blanchot ${ }^{29}$, T. Blazek ${ }^{143 a}$, C. Blocker 22, J. Blocki ${ }^{38}$, A. Blondel ${ }^{48}$, W. Blum ${ }^{80}$, U. Blumenschein ${ }^{53}$, G.J. Bobbink ${ }^{104}$, V.B. Bobrovnikov ${ }^{106}$, S.S. Bocchetta ${ }^{78}$, A. Bocci ${ }^{44}$, C.R. Boddy ${ }^{117}$, M. Boehler ${ }^{47}$, J. Boek ${ }^{174}$, N. Boelaert ${ }^{35}$, J.A. Bogaerts ${ }^{29}$, A. Bogdanchikov ${ }^{106}$, A. Bogouch ${ }^{89, *}$, C. Bohm ${ }^{145 \text { a, J. Bohm }}{ }^{124}$, V. Boisvert ${ }^{75}$, T. Bold ${ }^{37}$, V. Boldea ${ }^{25 a}$, N.M. Bolnet ${ }^{135}$, M. Bomben ${ }^{77}$, M. Bona ${ }^{74}$, M. Boonekamp ${ }^{135}$, C.N. Booth ${ }^{138}$, S. Bordoni ${ }^{77}$, C. Borer ${ }^{16}$, A. Borisov ${ }^{127}$, G. Borissov ${ }^{70}$, I. Borjanovic ${ }^{12 a}$, M. Borri ${ }^{81}$, S. Borroni ${ }^{86}$, V. Bortolotto ${ }^{133 a, 133 b}$, K. Bos ${ }^{104}$, D. Boscherini ${ }^{19 a}$, M. Bosman ${ }^{11}$, H. Boterenbrood ${ }^{104}$, J. Bouchami ${ }^{92}$, J. Boudreau ${ }^{122}$, E.V. Bouhova-Thacker ${ }^{70}$, D. Boumediene ${ }^{33}$, C. Bourdarios ${ }^{114}$, N. Bousson ${ }^{82}$, A. Boveia ${ }^{30}$, J. Boyd ${ }^{29}$, I.R. Boyko ${ }^{63}$, I. Bozovic-Jelisavcic ${ }^{12 b}$, J. Bracinik ${ }^{17}$, P. Branchini ${ }^{\text {133a }}$, G.W. Brandenburg ${ }^{56}$, A. Brandt ${ }^{7}$, G. Brandt ${ }^{117}$, O. Brandt ${ }^{53}$, U. Bratzler ${ }^{155}$, B. Brau ${ }^{\text {83 }}$, J.E. Brau ${ }^{113}$, H.M. Braun ${ }^{174, *}$, S.F. Brazzale ${ }^{163 a, 163 \mathrm{c}}$, B. Brelier ${ }^{157}$, J. Bremer ${ }^{29}$, K. Brendlinger ${ }^{119}$, R. Brenner ${ }^{165}$, S. Bressler ${ }^{171}$, D. Britton ${ }^{52}$, F.M. Brochu ${ }^{27}$,'
I. Brock ${ }^{20}$, R. Brock 87, F. Broggi ${ }^{88 \text { a }}$, C. Bromberg ${ }^{87}$, J. Bronner ${ }^{98}$, G. Brooijmans ${ }^{34}$, T. Brooks ${ }^{75}$, W.K. Brooks ${ }^{31 \mathrm{~b}}$, G. Brown ${ }^{81}$, H. Brown ${ }^{7}$, P.A. Bruckman de Renstrom ${ }^{38}$, D. Bruncko ${ }^{143 \mathrm{~b}}$, R. Bruneliere ${ }^{47}$, S. Brunet ${ }^{59}$, A. Bruni ${ }^{19 a}$, G. Bruni ${ }^{19 a}$, M. Bruschi ${ }^{19 a}$, T. Buanes ${ }^{13}$, Q. Buat ${ }^{54}$, F. Bucci ${ }^{48}$, J. Buchanan ${ }^{117}$, P. Buchholz ${ }^{140}$, R.M. Buckingham ${ }^{117}$, A.G. Buckley ${ }^{45}$, S.I. Buda ${ }^{25 a}$, I.A. Budagov ${ }^{63}$, B. Budick ${ }^{107}$, V. Büscher ${ }^{80}$, L. Bugge ${ }^{116}$, O. Bulekov ${ }^{95}$, A.C. Bundock ${ }^{72}$, M. Bunse ${ }^{42}$, T. Buran ${ }^{116}$, H. Burckhart ${ }^{29}$, S. Burdin ${ }^{72}$, T. Burgess ${ }^{13}$, S. Burke ${ }^{128}$, E. Busato ${ }^{33}$, P. Bussey ${ }^{52}$, C.P. Buszello ${ }^{165}$, B. Butler ${ }^{142}$, J.M. Butler ${ }^{\text {² }}$, C.M. Buttar ${ }^{52}$, J.M. Butterworth ${ }^{76}$, W. Buttinger ${ }^{27}$, M. Byszewski ${ }^{29}$, S. Cabrera Uurbán ${ }^{166}$, D. Caforio ${ }^{19 a, 19 b}$, O. Cakir ${ }^{3 a}$, P. Calafiura ${ }^{14}$, G. Calderini ${ }^{77}$, P. Calfayan ${ }^{97}$, R. Calkins ${ }^{105}$, L.P. Caloba ${ }^{23 a}$, R. Caloi ${ }^{131 a, 131 b}$, D. Calvet ${ }^{33}$, S. Calvet ${ }^{33}$, R. Camacho Toro ${ }^{33}$, P. Camarri ${ }^{132 a, 132 b}$, D. Cameron ${ }^{116}$, L.M. Caminada ${ }^{14}$, R. Caminal Armadans ${ }^{11}$, S. Campana ${ }^{29}$, M. Campanelli ${ }^{76}$, V. Canale ${ }^{101 a, 101 b}$, F. Canelli ${ }^{30, g}$, A. Canepa ${ }^{158 a}$, J. Cantero ${ }^{79}$, R. Cantrill ${ }^{75}$, L. Capasso ${ }^{101 a, 101 b}$, M.D.M. Capeans Garrido ${ }^{29}$, I. Caprini ${ }^{25 a}$, M. Caprini ${ }^{25 a}$, D. Capriotti ${ }^{98}$, M. Capua ${ }^{36 a, 36 \mathrm{~b}}$, R. Caputo ${ }^{80}$, R. Cardarelli ${ }^{132 \mathrm{a}}$, T. Carli ${ }^{29}$, G. Carlino ${ }^{101 a}$, L. Carminati ${ }^{88 a, 88 b}$, B. Caron ${ }^{84}$, S. Caron ${ }^{103}$, E. Carquin ${ }^{31 \mathrm{~b}}$, G.D. Carrillo-Montoya ${ }^{172}$, A.A. Carter ${ }^{74}$, J.R. Carter ${ }^{27}$, J. Carvalho ${ }^{123 a, h}$, D. Casadei ${ }^{107}$, M.P. Casado ${ }^{11}$, M. Cascella ${ }^{121 a, 121 b}$, C. Caso ${ }^{49 a, 49 b, *,}$ A.M. Castaneda Hernandez ${ }^{172, i}$, E. Castaneda-Miranda ${ }^{172}$, V. Castillo Gimenez ${ }^{166}$, N.F. Castro ${ }^{123 a}$, G. Cataldi ${ }^{71 a}$, P. Catastini ${ }^{56}$, A. Catinaccio ${ }^{29}$, J.R. Catmore ${ }^{\text {29 }}$, A. Cattai ${ }^{29}$, G. Cattani ${ }^{132 a, 132 b}$, S. Caughron ${ }^{87}$, V. Cavaliere ${ }^{164}$, P. Cavalleri ${ }^{77}$, D. Cavalli ${ }^{88 a}$, M. Cavalli-Sforza ${ }^{11}$, V. Cavasinni ${ }^{121 a, 121 \mathrm{~b}}$, F. Ceradini ${ }^{133}{ }^{13}, 133 \mathrm{~b}$, A.S. Cerqueira ${ }^{23 \mathrm{~b}}$, A. Cerri ${ }^{29}$, L. Cerrito ${ }^{74}$, F. Cerutti ${ }^{46}$, S.A. Cetin ${ }^{18 b}$, A. Chafaq ${ }^{134 a}$, D. Chakraborty ${ }^{105}$, I. Chalupkova ${ }^{125}$, K. Chan ${ }^{2}$, P. Chang ${ }^{164}$, B. Chapleau ${ }^{84}$, J.D. Chapman ${ }^{27}$, J.W. Chapman ${ }^{86}$, E. Chareyre ${ }^{77}$, D.G. Charlton ${ }^{17}$, V. Chavda ${ }^{81}$, C.A. Chavez Barajas ${ }^{29}$, S. Cheatham ${ }^{84}$, S. Chekanov ${ }^{5}$, S.V. Chekulaev ${ }^{158 \mathrm{a}}$, G.A. Chelkov ${ }^{63}$, M.A. Chelstowska ${ }^{103}$, C. Chen ${ }^{62}$, H. Chen ${ }^{24}$, S. Chen ${ }^{32 \mathrm{c}}$, X. Chen ${ }^{172}$, Y. Chen ${ }^{34}$, A. Cheplakov ${ }^{63}$, R. Cherkaoui El Moursli ${ }^{134 \mathrm{e}}$, V. Chernyatin ${ }^{24}$, E. Cheu ${ }^{6}$, S.L. Cheung ${ }^{157}$, L. Chevalier ${ }^{135}$, G. Chiefari ${ }^{101 a, 101 b}$, L. Chikovani ${ }^{50 a}{ }^{\text {a }}$, J.T. Childers ${ }^{29}$, A. Chilingarov ${ }^{70}$, G. Chiodini ${ }^{71 a}$, A.S. Chisholm ${ }^{17}$, R.T. Chislett ${ }^{76}$, A. Chitan ${ }^{25 a}$, M.V. Chizhov ${ }^{63}$, G. Choudalakis ${ }^{30}$, S. Chouridou ${ }^{136}$, I.A. Christidi ${ }^{76}$, A. Christov ${ }^{47}$, D. Chromek-Burckhart ${ }^{29}$, M.L. Chu ${ }^{150}$, J. Chudoba ${ }^{124}$, G. Ciapetti ${ }^{131}{ }^{1}$ a, 131 b , A.K. Ciftci ${ }^{3 a}$, R. Ciftci ${ }^{3 a}$, D. Cinca ${ }^{33}$, V. Cindro ${ }^{73}$, C. Ciocca ${ }^{19 a, 19 b}$, A. Ciocio ${ }^{14}$, M. Cirilli ${ }^{86}$, P. Cirkovic ${ }^{12 b}$, Z.H. Citron ${ }^{171}$, M. Citterio ${ }^{88 \mathrm{a}}$, M. Ciubancan ${ }^{25 a}$, A. Clark ${ }^{48}$, P.J. Clark ${ }^{45}$, R.N. Clarke ${ }^{14}$, W. Cleland ${ }^{122}$, J.C. Clemens ${ }^{82}$,
 J.G. Cogan ${ }^{142}$, J. Coggeshall ${ }^{164}$, E. Cogneras ${ }^{177}$, J. Colas ${ }^{4}$, S. Cole ${ }^{105}$, A.P. Colijn ${ }^{104}$, N.J. Collins ${ }^{17}$, C. Collins-Tooth ${ }^{52}$, J. Collot ${ }^{54}$, T. Colombo ${ }^{118 a, 118 \mathrm{~b}}$, G. Colon ${ }^{83}$, P. Conde Muiño ${ }^{123 \mathrm{a} \text { a }}$, E. Coniavitis ${ }^{117}$, M.C. Conidi ${ }^{11}$, S.M. Consonni ${ }^{\text {88a, } 88 \mathrm{~b}}$, V. Consorti ${ }^{47}$, S. Constantinescu ${ }^{25 a}$, C. Conta ${ }^{118 \mathrm{Ba}, 118 \mathrm{~b}}$, G. Conti ${ }^{56}$, F. Conventi ${ }^{101}{ }^{1}, j$, M. Cooke ${ }^{14}$, B.D. Cooper ${ }^{76}$, A.M. Cooper-Sarkar ${ }^{117}$, K. Copic ${ }^{14}$, T. Cornelissen ${ }^{174}$, M. Corradi ${ }^{19 a}$, F. Corriveau ${ }^{84, k}$, A. Cortes-Gonzalez ${ }^{164}$, G. Cortiana ${ }^{98}$, G. Costa ${ }^{88 \text { Ba }}$, M.J. Costa ${ }^{166}$, D. Costanzo ${ }^{138}$, D. Côté ${ }^{29}$, L. Courneyea ${ }^{168}$, G. Cowan ${ }^{75}$, C. Cowden ${ }^{27}$, B.E. Cox ${ }^{81}$, K. Cranmer ${ }^{107}$, F. Crescioli ${ }^{121 a, 121 b}$, M. Cristinziani ${ }^{20}$, G. Crosetti ${ }^{36 a, 36 b}$, S. Crépé-Renaudin ${ }^{54}$, C.-M. Cuciuc ${ }^{25 a}$, C. Cuenca Almenar ${ }^{175}$, T. Cuhadar Donszelmann ${ }^{138}$, M. Curatolo ${ }^{46}$, C.J. Curtis ${ }^{17}$, C. Cuthbert ${ }^{149}$, P. Cwetanski ${ }^{59}$, H. Czirr ${ }^{140}$, P. Czodrowski ${ }^{43}$, Z. Czyczula ${ }^{175}$, S. D’Auria ${ }^{52}$, M. D’Onofrio ${ }^{72}$, A. D'Orazio ${ }^{131{ }^{\prime}, 131 b}$, M.J. Da Cunha Sargedas De Sousa ${ }^{123 a}$, C. Da Via ${ }^{81}$, W. Dabrowski ${ }^{37}$, A. Dafinca ${ }^{117}$, T. Dai ${ }^{86}$, C. Dallapiccola ${ }^{83}$, M. Dam ${ }^{35}$, M. Dameri ${ }^{49 a, 49 b}$, D.S. Damiani ${ }^{136}$, H.O. Danielsson ${ }^{29}$, V. Dao ${ }^{48}$, G. Darbo ${ }^{49 a}$, G.L. Darlea ${ }^{25 b}$, J.A. Dassoulas ${ }^{41}$, W. Davey ${ }^{20}$, T. Davidek ${ }^{125}$, N. Davidson ${ }^{85}$, R. Davidson 70 ', E. Davies ${ }^{117, c}$, M. Davies ${ }^{92}$, O. Davignon ${ }^{77}$, A.R. Davison ${ }^{76}$, Y. Davygora ${ }^{\text {57a }}$, E. Dawe ${ }^{141}$, I. Dawson ${ }^{138}$, R.K. Daya-Ishmukhametova ${ }^{22}$, K. De ${ }^{7}$, R. de Asmundis ${ }^{101 a}$, S. De Castro ${ }^{19 a}{ }^{19 \mathrm{~b}}$, S. De Cecco ${ }^{77}$, J. de Graat ${ }^{97}$, N. De Groot ${ }^{103}$, P. de Jong ${ }^{104}$, C. De La Taille ${ }^{114}$, H. De la Torre ${ }^{79}$, F. De Lorenzi ${ }^{\prime}{ }^{62}$, L. de Mora ${ }^{70}$, L. De Nooij ${ }^{104}$, D. De Pedis ${ }^{131 \text { 'a }}$, A. De Salvo ${ }^{131 a}$, U. De Sanctis ${ }^{163 a, 163 c}$, A. De Santo ${ }^{148}$, J.B. De Vivie De Regie ${ }^{114}$, G. De Zorzi ${ }^{131 a}$, 131b ${ }^{\prime}$, W.J. Dearnaley ${ }^{70}$, R. Debbe ${ }^{24}$, C. Debenedetti ${ }^{45}$, B. Dechenaux ${ }^{54}$, D.V. Dedovich ${ }^{63}$, J. Degenhardt ${ }^{119}$, C. Del Papa ${ }^{163 a, 163 c}$, J. Del Peso ${ }^{79}$, T. Del Prete ${ }^{121 a, 121 b}$, T. Delemontex ${ }^{54}$, M. Deliyergiyev ${ }^{73}$, A. Dell'Acqua ${ }^{29}$, L. Dell'Asta ${ }^{21}$, M. Della Pietra ${ }^{101 a, j}$, D. della Volpe ${ }^{101 a, 101 b}$, M. Delmastro ${ }^{4}$, P.A. Delsart ${ }^{54}$, C. Deluca ${ }^{104}$, S. Demers ${ }^{175}$, M. Demichev ${ }^{63}$, B. Demirkoz ${ }^{11, l}$, J. Deng ${ }^{162}$, S.P. Denisov ${ }^{127}$, D. Derendarz ${ }^{38}$, J.E. Derkaoui ${ }^{134 d}$, F. Derue ${ }^{77}$, P. Dervan ${ }^{72}$, K. Desch ${ }^{20}$, E. Devetak ${ }^{147}$, P.O. Deviveiros ${ }^{104}$, A. Dewhurst ${ }^{128}$, B. DeWilde ${ }^{147}$, S. Dhaliwal ${ }^{157}$, R. Dhullipudi ${ }^{24, m}$, A. Di Ciaccio ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, L. Di Ciaccio ${ }^{4}$, A. Di Girolamo ${ }^{29}$,
B. Di Girolamo ${ }^{29}$, S. Di Luise ${ }^{133 a, 133 b}$, A. Di Mattia ${ }^{172}$, B. Di Micco ${ }^{29}$, R. Di Nardo ${ }^{46}$,
A. Di Simone ${ }^{132 a, 132 b}$, R. Di Sipio ${ }^{19 a, 19 b}$, M.A. Diaz ${ }^{31 a}$, E.B. Diehl ${ }^{86}$, J. Dietrich ${ }^{41}$, T.A. Dietzsch ${ }^{57 a}$, S. Diglio ${ }^{85}$, K. Dindar Yagci ${ }^{39}$, J. Dingfelder ${ }^{20}$, F. Dinut ${ }^{25 a}$, C. Dionisi ${ }^{131 a, 131 b}$, P. Dita ${ }^{25 a}$, S. Dita ${ }^{25 a}$, F. Dittus ${ }^{29}$, F. Djama ${ }^{82}$, T. Djobava ${ }^{50 b}$, M.A.B. do Vale ${ }^{23 c}$, A. Do Valle Wemans ${ }^{123 a, n}$, T.K.O. Doan ${ }^{4}$, M. Dobbs ${ }^{84}$, R. Dobinson ${ }^{29, *}$, D. Dobos ${ }^{29}$, E. Dobson ${ }^{29,0}$, J. Dodd ${ }^{34}$, C. Doglioni ${ }^{48}$, T. Doherty ${ }^{52}$, Y. Doi ${ }^{64, *}$, J. Dolejsi ${ }^{125}$, I. Dolenc ${ }^{73}$, Z. Dolezal ${ }^{125}$, B.A. Dolgoshein ${ }^{95, *}$, T. Dohmae ${ }^{154}$, M. Donadelli ${ }^{23 \mathrm{~d}}$, J. Donini ${ }^{33}$, J. Dopke ${ }^{29}$, A. Doria ${ }^{101 a^{\prime}}$, A. Dos Anjos ${ }^{172}$, A. Dotti ${ }^{121 a, 121 b}$, M.T. Dova ${ }^{69}$, A.D. Doxiadis ${ }^{104}$, A.T. Doyle ${ }^{52}$, N. Dressnandt ${ }^{119}$, M. Dris ${ }^{9}$, J. Dubbert ${ }^{98}$, S. Dube ${ }^{14}$, E. Duchovni ${ }^{171}$, G. Duckeck ${ }^{97}$, D. Duda ${ }^{174}$,A. Dudarev ${ }^{29}$, F. Dudziak ${ }^{62}$, M. Dührssen ${ }^{29}$, I.P. Duerdoth ${ }^{81}$, L. Duflot ${ }^{114}$, M.-A. Dufour ${ }^{84}$, L. Duguid ${ }^{75}$, M. Dunford ${ }^{29}$, H. Duran Yildiz ${ }^{3 a}$, R. Duxfield ${ }^{138}$, M. Dwuznik ${ }^{37}$, F. Dydak ${ }^{29}$, M. Düren ${ }^{51}$, W.L. Ebenstein ${ }^{44}$, J. Ebke ${ }^{97}$, S. Eckweiler ${ }^{80}$, K. Edmonds ${ }^{80}$, W. Edson ${ }^{1}$, C.A. Edwards ${ }^{75}$, N.C. Edwards ${ }^{52}$, W. Ehrenfeld ${ }^{41}$, T. Eifert ${ }^{142}$, G. Eigen ${ }^{13}$, K. Einsweiler ${ }^{14}$, E. Eisenhandler ${ }^{74}$, T. Ekelof ${ }^{165}$, M. El Kacimi ${ }^{134 \text { c }}$, M. Ellert ${ }^{165}$, S. Elles ${ }^{4}$, F. Ellinghaus ${ }^{80}$, K. Ellis ${ }^{74}$, N. Ellis ${ }^{29}$, J. Elmsheuser ${ }^{97}$, M. Elsing ${ }^{29}$, D. Emeliyanov ${ }^{128}$, R. Engelmann ${ }^{147}$, A. Engl ${ }^{97}$, B. Epp ${ }^{60}$, J. Erdmann ${ }^{53}$, A. Ereditato ${ }^{16}$, D. Eriksson ${ }^{145 a}$, J. Ernst ${ }^{1}$, M. Ernst ${ }^{24}$, J. Ernwein ${ }^{135}$, D. Errede ${ }^{164}$, S. Errede ${ }^{164}$, E. Ertel ${ }^{80}$, M. Escalier ${ }^{114}$, H. Esch ${ }^{42}$, C. Escobar ${ }^{122}$, X. Espinal Curull ${ }^{11}$, B. Esposito ${ }^{46}$, F. Etienne 82, A.I. Etienvre ${ }^{135}$, E. Etzion ${ }^{152}$, D. Evangelakou ${ }^{53}$, H. Evans ${ }^{59}$, L. Fabbri ${ }^{19 a}, 19 \mathrm{~b}$, C. Fabre ${ }^{29}$, R.M. Fakhrutdinov ${ }^{127}$, S. Falciano ${ }^{1311 a}$, Y. Fang ${ }^{172}$, M. Fanti ${ }^{88 a, 88 b}$, A. Farbin ${ }^{7}$, A. Farilla ${ }^{133 a}$, J. Farley ${ }^{147}$, T. Farooque ${ }^{157}$, S. Farrell ${ }^{162}$, S.M. Farrington ${ }^{169}$, P. Farthouat ${ }^{29}$, F. Fassi ${ }^{166}$, P. Fassnacht ${ }^{29}$, D. Fassouliotis ${ }^{8}$, B. Fatholahzadeh ${ }^{157}$, A. Favareto ${ }^{\text {88a, } 88 \mathrm{~b}}$, L. Fayard ${ }^{114}$, S. Fazio ${ }^{36 a, 36 \mathrm{~b}}$, R. Febbraro ${ }^{33}$, P. Federic ${ }^{143 \mathrm{a}}$, O.L. Fedin ${ }^{120}$, W. Fedorko ${ }^{87}$, M. Fehling-Kaschek ${ }^{47}$, L. Feligioni ${ }^{82}$, D. Fellmann ${ }^{5}$, C. Feng ${ }^{32 d}$, E.J. Feng ${ }^{5}$, A.B. Fenyuk ${ }^{127}$, J. Ferencei ${ }^{1433 b}$, W. Fernando ${ }^{5}$, S. Ferrag ${ }^{52}$, J. Ferrando ${ }^{52}$, V. Ferrara ${ }^{41}$, A. Ferrari ${ }^{165}$, P. Ferrari ${ }^{104}$, R. Ferrari ${ }^{118 a}$, D.E. Ferreira de Lima ${ }^{52}$, A. Ferrer ${ }^{166}$, D. Ferrere ${ }^{48}$, C. Ferretti ${ }^{86}$, A. Ferretto Parodi ${ }^{49 a, 49 \mathrm{~b}}$, M. Fiascaris ${ }^{30}$, F. Fiedler ${ }^{80}$, A. Filipčič ${ }^{73}$, F. Filthaut ${ }^{\prime}{ }^{103}$, M. Fincke-Keeler ${ }^{168}$, M.C.N. Fiolhais ${ }^{123 a, h}$, L. Fiorini ${ }^{166}$, A. Firan ${ }^{39}$, G. Fischer ${ }^{41}$, M.J. Fisher ${ }^{108}$, M. Flechl ${ }^{47}$, I. Fleck ${ }^{140}$, J. Fleckner ${ }^{80}$, P. Fleischmann ${ }^{173}$, S. Fleischmann ${ }^{174}$, T. Flick ${ }^{174}$, A. Floderus ${ }^{78}$, L.R. Flores Castillo ${ }^{172}$, M.J. Flowerdew ${ }^{98}$, T. Fonseca Martin ${ }^{16}$, A. Formica ${ }^{135}$, A. Forti ${ }^{81}$, D. Fortin ${ }^{158 a}$, D. Fournier ${ }^{114}$, A.J. Fowler ${ }^{44}$, H. Fox ${ }^{70}$, P. Francavilla ${ }^{11}$, M. Franchini ${ }^{\text {'9a, } 19 \mathrm{~b}}$, S. Franchino ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, D. Francis ${ }^{29}{ }^{\text {', }}$ T. Frank ${ }^{171}$, S. Franz ${ }^{29}$, M. Fraternali ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, S. Fratina ${ }^{119}$, S.T. French ${ }^{27}$, C. Friedrich ${ }^{41}$, F. Friedrich ${ }^{43}$, R. Froeschl ${ }^{29}$, D. Froidevaux ${ }^{29}$, J.A. Frost ${ }^{27}$, C. Fukunaga ${ }^{155}$, E. Fullana Torregrosa ${ }^{29}$, B.G. Fulsom ${ }^{142}$, J. Fuster ${ }^{166}$, C. Gabaldon ${ }^{29}$, O. Gabizon ${ }^{171}$, A. Gabrielli ${ }^{131 a, 131 b}$, T. Gadfort ${ }^{24}$, S. Gadomski ${ }^{48}$, G. Gagliardi ${ }^{\text {49a, 49b }}$, P. Gagnon ${ }^{59}$, C. Galea ${ }^{97}$, B. Galhardo ${ }^{123 \mathrm{a}}$, E.J. Gallas ${ }^{117}$, V. Gallo ${ }^{16}$, B.J. Gallop ${ }^{128}$, P. Gallus ${ }^{124}$, K.K. Gan ${ }^{108}$, Y.S. Gao ${ }^{142, e}$, A. Gaponenko ${ }^{14}$, F. Garberson ${ }^{175}$, M. Garcia-Sciveres ${ }^{14}$, C. García ${ }^{166}$, J.E. García Navarro ${ }^{166}$, R.W. Gardner ${ }^{30}$, N. Garelli ${ }^{29}$, H. Garitaonandia ${ }^{104}$, V. Garonne ${ }^{29}$, C. Gatti ${ }^{46}$, G. Gaudio ${ }^{118 \mathrm{a}}$, B. Gaur ${ }^{140}$, L. Gauthier ${ }^{135}$, P. Gauzzi ${ }^{131 \text { 1a, } 131 \mathrm{~b}}$, I.L. Gavrilenko ${ }^{93}$, C. Gay ${ }^{167}$, G. Gaycken ${ }^{20}$, E.N. Gazis ${ }^{9}$, P. Ge ${ }^{32 \mathrm{~d}}$, Z. Gecse ${ }^{167}$, C.N.P. Gee ${ }^{128}$, D.A.A. Geerts ${ }^{104}$, Ch. Geich-Gimbel ${ }^{20}$, K. Gellerstedt ${ }^{145 a, 145 \mathrm{~b}}$, C. Gemme ${ }^{49 \mathrm{a}}$, A. Gemmell ${ }^{52}$, M.H. Genest ${ }^{54}$, S. Gentile ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, M. George ${ }^{53}$, S. George ${ }^{75}$, P. Gerlach ${ }^{174}$, A. Gershon ${ }^{152}$, C. Geweniger ${ }^{57 \mathrm{a}}$, H. Ghazlane ${ }^{134 \mathrm{~b}}$, N. Ghodbane ${ }^{33}$, B. Giacobbe ${ }^{19 \mathrm{a}}$, S. Giagu ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, V. Giakoumopoulou ${ }^{8}$, V. Giangiobbe ${ }^{11}$, F. Gianotti ${ }^{29}$, B. Gibbard ${ }^{24}$, A. Gibson ${ }^{157}$, S.M. Gibson ${ }^{29}$, M. Gilchriese ${ }^{14}$, D. Gillberg ${ }^{28}$, A.R. Gillman ${ }^{128}$, D.M. Gingrich ${ }^{2, d}$, J. Ginzburg ${ }^{152}$, N. Giokaris ${ }^{8}$, M.P. Giordani ${ }^{163 \mathrm{C}}$, R. Giordano ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, F.M. Giorgi ${ }^{15}$, P. Giovannini ${ }^{98}$, P.F. Giraud ${ }^{135}$, D. Giugni ${ }^{88 a}$, M. Giunta ${ }^{92}$, P. Giusti ${ }^{19 a}$, B.K. Gjelsten ${ }^{1166}$, L.K. Gladilin ${ }^{96}$, C. Glasman ${ }^{79}$, J. Glatzer ${ }^{47}$, A. Glazov ${ }^{41}$, K.W. Glitza ${ }^{174}$, G.L. Glonti ${ }^{63}$, J.R. Goddard ${ }^{74}$, J. Godfrey ${ }^{141}$, J. Godlewski 29 , M. Goebel ${ }^{41}$, T. Göpfert ${ }^{43}$, C. Goeringer ${ }^{80}$, C. Gössling ${ }^{42}$, S. Goldfarb ${ }^{86}$, T. Golling ${ }^{175}$, A. Gomes ${ }^{123 a, b}$, L.S. Gomez Fajardo ${ }^{41}$, R. Gonçalo ${ }^{75}$, J. Goncalves Pinto Firmino Da Costa ${ }^{41}$, L. Gonella ${ }^{20}$, S. Gonzalez ${ }^{172}$, S. González de la Hoz ${ }^{166}$, G. Gonzalez Parra ${ }^{11}$, M.L. Gonzalez Silva ${ }^{26}$, S. Gonzalez-Sevilla ${ }^{48}$, J.J. Goodson ${ }^{147}$, L. Goossens ${ }^{29}$, P.A. Gorbounov ${ }^{94}$, H.A. Gordon ${ }^{24}$, I. Gorelov ${ }^{102}$, G. Gorfine ${ }^{174}$, B. Gorini ${ }^{29}$, E. Gorini ${ }^{71 a, 71 b}$, A. Gorišek ${ }^{73}$, E. Gornicki ${ }^{38}$, B. Gosdzik ${ }^{41}$, A.T. Goshaw ${ }^{5}$, M. Gosselink ${ }^{104}$, M.I. Gostkin ${ }^{63}$, I. Gough Eschrich ${ }^{162}$, M. Gouighri ${ }^{134 a}$, D. Goujdami ${ }^{134 c}$, M.P. Goulette ${ }^{48}$,
A.G. Goussiou ${ }^{137}$, C. Goy ${ }^{4}$, S. Gozpinar ${ }^{22}$, I. Grabowska-Bold ${ }^{37}$, P. Grafström ${ }^{19 a, 19 b}$, K.-J. Grahn ${ }^{41}$, F. Grancagnolo ${ }^{71 \text { a, S. Grancagnolo }}{ }^{15}$, V. Grassi ${ }^{147}$, V. Gratchev ${ }^{120}$, N. Grau ${ }^{34}$, H.M. Gray ${ }^{29}$, J.A. Gray ${ }^{147}$, E. Graziani ${ }^{133 a}$, O.G. Grebenyuk ${ }^{120}$, T. Greenshaw ${ }^{72}$, Z.D. Greenwood ${ }^{24, m}$, K. Gregersen ${ }^{35}$, I.M. Gregor ${ }^{41}$,
P. Grenier ${ }^{142}$, J. Griffiths ${ }^{7}$, N. Grigalashvili ${ }^{63}$, A.A. Grillo ${ }^{136}$, S. Grinstein ${ }^{11}$, Ph. Gris ${ }^{33}$, Y.V. Grishkevich ${ }^{96}$, J.-F. Grivaz ${ }^{114}$, E. Gross ${ }^{171}$, J. Grosse-Knetter ${ }^{53}$, J. Groth-Jensen ${ }^{171}$, K. Grybel ${ }^{140}$, D. Guest ${ }^{175}$, C. Guicheney ${ }^{33}$, S. Guindon ${ }^{53}$, U. Gul ${ }^{52}$, H. Guler ${ }^{84, p}$, J. Gunther ${ }^{124}$, B. Guo ${ }^{157}$, J. Guo ${ }^{34}$, P. Gutierrez ${ }^{110}$, N. Guttman ${ }^{152}$, O. Gutzwiller ${ }^{172}$, C. Guyot ${ }^{135}$, C. Gwenlan ${ }^{117}$, C.B. Gwilliam ${ }^{72}$, A. Haas ${ }^{142}$, S. Haas ${ }^{29}$, C. Haber ${ }^{14}$, H.K. Hadavand ${ }^{39}$, D.R. Hadley ${ }^{17}$, P. Haefner ${ }^{20}$, F. Hahn ${ }^{29}$, S. Haider ${ }^{29}$, Z. Hajduk ${ }^{38}$, H. Hakobyan ${ }^{176}$, D. Hall ${ }^{117}$, J. Haller ${ }^{53}$, K. Hamacher ${ }^{174}$, P. Hamal ${ }^{112}$, K. Hamano ${ }^{85}$, M. Hamer ${ }^{53}$, A. Hamilton ${ }^{144 b, q}$, S. Hamilton ${ }^{160}$, L. Han ${ }^{32 b}$, K. Hanagaki ${ }^{115}$, K. Hanawa ${ }^{159}$, M. Hance ${ }^{14}$, C. Handel ${ }^{80}$, P. Hanke ${ }^{57 a}$, J.R. Hansen ${ }^{35}$, J.B. Hansen ${ }^{35}$, J.D. Hansen ${ }^{35}$, P.H. Hansen ${ }^{35}$, P. Hansson ${ }^{142}$, K. Hara ${ }^{159}$, G.A. Hare ${ }^{136}$, T. Harenberg ${ }^{174}$, S. Harkusha ${ }^{89}$, D. Harper ${ }^{86}$, R.D. Harrington ${ }^{45}$, O.M. Harris ${ }^{137}$, J. Hartert ${ }^{47}$, F. Hartjes ${ }^{104}$, T. Haruyama ${ }^{64}$, A. Harvey ${ }^{55}$, S. Hasegawa ${ }^{100}$, Y. Hasegawa ${ }^{139}$, S. Hassani ${ }^{135}$, S. Haug ${ }^{16}$, M. Hauschild ${ }^{29}$, R. Hauser ${ }^{87}$, M. Havranek ${ }^{20}$, C.M. Hawkes ${ }^{17}$, R.J. Hawkings ${ }^{29}$, A.D. Hawkins ${ }^{78}$, D. Hawkins ${ }^{162}$, T. Hayakawa ${ }^{65}$, T. Hayashi ${ }^{159}$, D. Hayden ${ }^{75}$, C.P. Hays ${ }^{117}$, H.S. Hayward ${ }^{72}$, S.J. Haywood ${ }^{128}$, M. He ${ }^{32 \mathrm{~d}}$, S.J. Head ${ }^{17}$, V. Hedberg ${ }^{78}$, L. Heelan ${ }^{7}$, S. Heim ${ }^{87}$, B. Heinemann ${ }^{14}$, S. Heisterkamp ${ }^{35}$, L. Helary ${ }^{21}$, C. Heller 97, M. Heller ${ }^{29}$, S. Hellman ${ }^{145 a, 145 b,}$ D. Hellmich ${ }^{20}$, C. Helsens ${ }^{11}$, R.C.W. Henderson ${ }^{70}$, M. Henke ${ }^{57 a}$, A. Henrichs ${ }^{53}$, A.M. Henriques Correia ${ }^{29}$, S. Henrot-Versille ${ }^{114}$, C. Hensel ${ }^{53}$, T. Hen ${ }^{174}$, C.M. Hernandez ${ }^{7}$, Y. Hernández Jiménez ${ }^{166}$, R. Herrberg ${ }^{15}$, G. Herten ${ }^{47}$, R. Hertenberger ${ }^{97}$, L. Hervas ${ }^{29}$, G.G. Hesketh ${ }^{76}$, N.P. Hessey ${ }^{104}$, E. Higón-Rodriguez ${ }^{166}$, J.C. Hill ${ }^{27}$, K.H. Hiller ${ }^{41}$, S. Hillert ${ }^{20}$, S.J. Hillier ${ }^{17}$, I. Hinchliffe ${ }^{14}$, E. Hines ${ }^{119}$, M. Hirose ${ }^{115}$, F. Hirsch ${ }^{42}$, D. Hirschbueh ${ }^{174}$, J. Hobbs ${ }^{147}$, N. Hod ${ }^{152}$, M.C. Hodgkinson ${ }^{138}$,' P. Hodgson ${ }^{138}$, A. Hoecker ${ }^{29}$, M.R. Hoeferkamp ${ }^{102}$, J. Hoffman ${ }^{39}$, D. Hoffmann ${ }^{82}$, M. Hohlfeld ${ }^{80}$, M. Holder ${ }^{140}$, S.O. Holmgren ${ }^{145 a}$, T. Holy ${ }^{126}$, J.L. Holzbauer ${ }^{87}$, T.M. Hong ${ }^{119}$, L. Hooft van Huysduynen ${ }^{107}$, S. Horner ${ }^{47}$, J.-Y. Hostachy ${ }^{54}$, S. Hou ${ }^{150}$, A. Hoummada ${ }^{134 a}$, J. Howard ${ }^{117}$, J. Howarth ${ }^{81}$, I. Hristova ${ }^{15}$, J. Hrivnac ${ }^{114}$, T. Hryn'ova ${ }^{4}$, P.J. Hsu ${ }^{80}$, S.-C. Hsu ${ }^{14}$, D. Hu ${ }^{34}$, Z. Hubacek ${ }^{126}$, F. Hubaut ${ }^{82}$, F. Huegging ${ }^{20}$, A. Huettmann ${ }^{41}$, T.B. Huffman ${ }^{117}$, E.W. Hughes ${ }^{34}$, G. Hughes ${ }^{70}$, M. Huhtinen ${ }^{29}$, M. Hurwitz ${ }^{14}$, U. Husemann ${ }^{41}$, N. Huseynov ${ }^{63, r}$, J. Huston ${ }^{87}$, J. Huth ${ }^{56}$, G. Iacobucci ${ }^{48}$, G. Iakovidis ${ }^{9}$, M. Ibbotson ${ }^{81}$, I. Ibragimov ${ }^{140}$, L. Iconomidou-Fayard ${ }^{114}$, J. Idarraga ${ }^{114}$, P. Iengo ${ }^{101 a}$, O. Igonkina ${ }^{104}$, Y. Ikegami ${ }^{64}$, M. Ikeno ${ }^{64}$, D. Iliadis ${ }^{153}$, N. Ilic ${ }^{157}$, T. Ince ${ }^{20}$, J. Inigo-Golfin ${ }^{29}$, P. Ioannou ${ }^{8}$, M. Iodice ${ }^{133 a}$, K. Iordanidou ${ }^{8}$, V. Ippolito ${ }^{131 a, 131 b}$, A. Irles Quiles ${ }^{166}$, C. Isaksson ${ }^{165}$, M. Ishino ${ }^{66}$, M. Ishitsuka ${ }^{156}$, R. Ishmukhametov ${ }^{39}$, C. Issever ${ }^{117}$, S. Istin ${ }^{18 a}$, A.V. Ivashin ${ }^{127}$, W. Iwanski ${ }^{38}$, H. Iwasaki ${ }^{64}$, J.M. Izen ${ }^{40}$, V. Izzo ${ }^{101 \text { a }}$, B. Jackson ${ }^{119}$, J.N. Jackson ${ }^{72}$, P. Jackson ${ }^{142}$, M.R. Jaekel ${ }^{29}$, V. Jain ${ }^{59}$, K. Jakobs ${ }^{47}$, S. Jakobsen ${ }^{35}$, T. Jakoubek ${ }^{124}$, J. Jakubek ${ }^{126}$, D.K. Jana ${ }^{110}$, E. Jansen ${ }^{76}$, H. Jansen ${ }^{29}$, A. Jantsch ${ }^{98}$, M. Janus ${ }^{47}$, G. Jarlskog ${ }^{78}$, L. Jeanty ${ }^{56}$, I. Jen-La Plante ${ }^{30}{ }^{\prime}$, D. Jennens ${ }^{85}$, P. Jenni ${ }^{29}$, A.E. Loevschall-Jensen ${ }^{35}$, P. Jež ${ }^{35}$, S. Jézéquel ${ }^{4}$, M.K. Jha ${ }^{19 \mathrm{a}}$, H. Ji ${ }^{172}$, W. Ji ${ }^{80}$, J. Jia ${ }^{147}$, Y. Jiang ${ }^{32 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{41}$, S. Jin ${ }^{32 \mathrm{a}}$, O. Jinnouchi ${ }^{156}$, M.D. Joergensen ${ }^{35}$, D. Joffe ${ }^{39}$, M. Johansen ${ }^{145 a, 145 b}$, K.E. Johansson ${ }^{145 a}$, P. Johansson ${ }^{\text {138 }}$, S. Johnert ${ }^{41}$, K.A. Johns ${ }^{6}$, K. Jon-And ${ }^{145 a, 145 \mathrm{~b}}$, G. Jones ${ }^{169}$, R.W.L. Jones ${ }^{70}$, T.J. Jones ${ }^{72}$, C. Joram ${ }^{29}$, P.M. Jorge ${ }^{123 a}$, K.D. Joshi ${ }^{81}$, J. Jovicevic ${ }^{146}$, T. Jovin ${ }^{12 \mathrm{~b}}$, X. Ju ${ }^{172}$, C.A. Jung ${ }^{42}$, R.M. Jungst ${ }^{29}$, V. Juranek ${ }^{124}$, P. Jussel ${ }^{60}$, A. Juste Rozas ${ }^{11}$, S. Kabana ${ }^{16}$, M. Kaci ${ }^{166}$, A. Kaczmarska ${ }^{38}$, P. Kadlecik ${ }^{35}$, M. Kado ${ }^{114}$, H. Kagan ${ }^{108}$, M. Kagan ${ }^{56}$, E. Kajomovitz ${ }^{151}$, S. Kalinin ${ }^{174}$, L.V. Kalinovskaya ${ }^{63}$, S. Kama ${ }^{39}$, N. Kanaya ${ }^{154}$, M. Kaneda ${ }^{29}$, S. Kaneti ${ }^{27}$, T. Kanno ${ }^{156}$, V.A. Kantserov ${ }^{95}$, J. Kanzaki ${ }^{64}$, B. Kaplan ${ }^{107}$, A. Kapliy ${ }^{30}$, J. Kaplon ${ }^{29}$, D. Kar ${ }^{52}$, M. Karagounis ${ }^{20}$, K. Karakostas ${ }^{9}$, M. Karnevskiy ${ }^{41}$, V. Kartvelishvili ${ }^{70}$, A.N. Karyukhin ${ }^{127}$, L. Kashif ${ }^{172}$, G. Kasieczka ${ }^{57 \mathrm{~b}}$, R.D. Kass ${ }^{108}$, A. Kastanas ${ }^{13}$, M. Kataoka ${ }^{4}$, Y. Kataoka ${ }^{154}$, E. Katsoufis ${ }^{9}$, J. Katzy ${ }^{41}$, V. Kaushik ${ }^{6}$, K. Kawagoe ${ }^{68}$, T. Kawamoto ${ }^{154}$, G. Kawamura ${ }^{80}$, M.S. Kayl ${ }^{104}$, S. Kazama ${ }^{154}$, V.A. Kazanin ${ }^{106}$, M.Y. Kazarinov ${ }^{63}$, R. Keeler ${ }^{168}$, P.T. Keener ${ }^{119}$, R. Kehoe ${ }^{39}$, M. Keil ${ }^{53}$, G.D. Kekelidze ${ }^{63}$, J.S. Keller ${ }^{137}$, M. Kenyon ${ }^{52}$, O. Kepka ${ }^{124}$, N. Kerschen ${ }^{29}$, B.P. Kerševan ${ }^{73}$, S. Kersten ${ }^{174}$, K. Kessoku ${ }^{154}$, J. Keung ${ }^{157}$, F. Khalil-zada ${ }^{10}$, H. Khandanyan ${ }^{145 a, 145 b}$, A. Khanov ${ }^{111}$, D. Kharchenko ${ }^{63}$, A. Khodinov ${ }^{95}$, A. Khomich ${ }^{57 \mathrm{a}}$, T.J. Khoo ${ }^{27}$, G. Khoriauli ${ }^{20}$, A. Khoroshilov ${ }^{174}$, V. Khovanskiy ${ }^{94}$, E. Khramov ${ }^{63}$, J. Khubua ${ }^{50 \mathrm{~b}}$, H. Kim ${ }^{145 a, 145 \mathrm{~b}}$, S.H. Kim ${ }^{159}$, N. Kimura ${ }^{170}$, O. Kind ${ }^{15}$, B.T. King ${ }^{72}$, M. King ${ }^{65}$, R.S.B. King ${ }^{117}$, J. Kirk ${ }^{128}$, A.E. Kiryunin ${ }^{98}$, T. Kishimoto ${ }^{65}$, D. Kisielewska ${ }^{37}$, T. Kitamura ${ }^{65}$, T. Kittelmann ${ }^{122}$, K. Kiuchi ${ }^{159}$, E. Kladiva ${ }^{143 \mathrm{~b}}$, M. Klein ${ }^{72}$, U. Klein ${ }^{72}$, K. Kleinknecht ${ }^{80}$, M. Klemetti ${ }^{84}$, A. Klier ${ }^{171}$, P. Klimek ${ }^{145 a, 145 \mathrm{~b}}$, A. Klimentov ${ }^{24}$, R. Klingenberg ${ }^{42}$, J.A. Klinger ${ }^{81}$, E.B. Klinkby ${ }^{35}$, T. Klioutchnikova ${ }^{29}$, P.F. Klok ${ }^{103}$, S. Klous ${ }^{104}$, E.-E. Kluge ${ }^{57 a}$, T. Kluge ${ }^{72}$, P. Kluit ${ }^{\text {104 }}$, S. Kluth ${ }^{98}$,
N.S. Knecht ${ }^{157}$, E. Kneringer ${ }^{60}$, E.B.F.G. Knoops ${ }^{82}$, A. Knue ${ }^{53}$, B.R. Ko ${ }^{44}$, T. Kobayashi ${ }^{154}$, M. Kobel ${ }^{43}$, M. Kocian ${ }^{142}$, P. Kodys ${ }^{125}$, K. Köneke ${ }^{29}$, A.C. König ${ }^{103}$, S. Koenig ${ }^{80}$, L. Köpke ${ }^{80}$, F. Koetsveld ${ }^{103}$, P. Koevesarki ${ }^{20}$, T. Koffas ${ }^{28}$, E. Koffeman ${ }^{104}$, L.A. Kogan ${ }^{117}$, S. Kohlmann ${ }^{174}$, F. Kohn ${ }^{53}$, Z. Kohout ${ }^{126}$, T. Kohriki ${ }^{64}$, T. Koi 142, G.M. Kolachev ${ }^{106, *}$, H. Kolanoski ${ }^{15}$, V. Kolesnikov ${ }^{63}$, I. Koletsou ${ }^{88 a}$, J. Koll ${ }^{87}$, M. Kollefrath ${ }^{47}$, A.A. Komar ${ }^{93}$, Y. Komori ${ }^{154}$, T. Kondo ${ }^{64}$, T. Kono ${ }^{41, s}$, A.I. Kononov ${ }^{47}$, R. Konoplich ${ }^{107, t}$, N. Konstantinidis ${ }^{76}$, S. Koperny ${ }^{37}$, K. Korcyl ${ }^{38}$, K. Kordas ${ }^{153}$, A. Korn ${ }^{117}$, A. Korol ${ }^{106}$, I. Korolkov ${ }^{11}$, E.V. Korolkova ${ }^{138}$, V.A. Korotkov ${ }^{127}$, O. Kortner ${ }^{98}$, S. Kortner ${ }^{98}$, V.V. Kostyukhin ${ }^{20}$, S. Kotov ${ }^{98}$, V.M. Kotov ${ }^{63}$, A. Kotwal ${ }^{44}$, C. Kourkoumelis ${ }^{8}$, V. Kouskoura ${ }^{153}$, A. Koutsman ${ }^{158 a}$, R. Kowalewski ${ }^{168}$, T.Z. Kowalski ${ }^{37}$, W. Kozanecki ${ }^{135}$, A.S. Kozhin ${ }^{127}$, V. Kral ${ }^{126}$, V.A. Kramarenko ${ }^{96}$, G. Kramberger ${ }^{73}$, M.W. Krasny ${ }^{77}$, A. Krasznahorkay ${ }^{107}$, J.K. Kraus ${ }^{20}$, S. Kreiss ${ }^{107}$, F. Krejci ${ }^{126}$, J. Kretzschmar ${ }^{72}$, N. Krieger ${ }^{53}$, P. Krieger ${ }^{157}$, K. Kroeninger ${ }^{53}$, H. Kroha ${ }^{98}$, J. Kroll ${ }^{119}$, J. Kroseberg ${ }^{20}$, J. Krstic ${ }^{12 a}$, U. Kruchonak ${ }^{63}$, H. Krüger ${ }^{20}$, T. Kruker ${ }^{16}$, N. Krumnack ${ }^{62}$, Z.V. Krumshteyn ${ }^{63}$, T. Kubota ${ }^{85}$, S. Kuday ${ }^{3 a}$, S. Kuehn ${ }^{47}$, A. Kugel ${ }^{57 c}$, T. Kuhl ${ }^{41}$, D. Kuhn ${ }^{60}$, V. Kukhtin ${ }^{63}$, Y. Kulchitsky ${ }^{89}$, S. Kuleshov ${ }^{31 b}$, C. Kummer ${ }^{97}$, M. Kuna ${ }^{77}$, J. Kunkle ${ }^{119}$, A. Kupco ${ }^{124}$, H. Kurashige ${ }^{65}$, M. Kurata ${ }^{159}$, Y.A. Kurochkin ${ }^{89}$, V. Kus ${ }^{124}$, E.S. Kuwertz ${ }^{146}$, M. Kuze ${ }^{156}$, J. Kvita ${ }^{141}$, R. Kwee ${ }^{15}$, A. La Rosa ${ }^{48}$, L. La Rotonda ${ }^{36 a, 36 b}$, L. Labarga ${ }^{79}$, J. Labbe ${ }^{4}$, S. Lablak ${ }^{134 a}$, C. Lacasta ${ }^{166}$, F. Lacava ${ }^{\text {131a, } 131 \mathrm{~b}}$, H. Lacker ${ }^{15}$, D. Lacour ${ }^{77}$, V.R. Lacuesta ${ }^{166}$, E. Ladygin ${ }^{63}$, R. Lafaye ${ }^{4}$, B. Laforge ${ }^{77}$, T. Lagouri ${ }^{79}$, S. Lai ${ }^{47}$, E. Laisne ${ }^{54}$, M. Lamanna ${ }^{29}$, L. Lambourne ${ }^{76}$, C.L. Lampen ${ }^{6}$, W. Lampl ${ }^{6}$, E. Lancon ${ }^{135}$, U. Landgraf ${ }^{47}$, M.P.J. Landon ${ }^{74}$, J.L. Lane ${ }^{81}$, V.S. Lang ${ }^{57 a}$, C. Lange ${ }^{41}$, A.J. Lankford ${ }^{162}$, F. Lanni ${ }^{24}$, K. Lantzsch ${ }^{174}$, S. Laplace ${ }^{77}$, C. Lapoire ${ }^{\text {20 }}$, J.F. Laporte ${ }^{135}$, T. Lari ${ }^{88 \mathrm{a} a}$, A. Larner ${ }^{117}$, M. Lassnig ${ }^{29}$, P. Laurelli ${ }^{46}$, V. Lavorini ${ }^{36}{ }^{36}{ }^{36 \mathrm{~b}}$, W. Lavrijsen ${ }^{14}$, P. Laycock ${ }^{72}$, O. Le Dortz ${ }^{77}$, E. Le Guirriec ${ }^{82}$, C. Le Maner ${ }^{157}$, E. Le Menedeu ${ }^{11}$, T. LeCompte ${ }^{5}$, F. Ledroit-Guillon ${ }^{54}$, H. Lee ${ }^{104}$, J.S.H. Lee ${ }^{115}$, S.C. Lee ${ }^{150}$, L. Lee ${ }^{175}$, M. Lefebvre ${ }^{168}$, M. Legendre ${ }^{135}$, F. Legger ${ }^{97}$, C. Leggett ${ }^{14}$, M. Lehmacher ${ }^{20}$, G. Lehmann Miotto ${ }^{29}$, X. Lei ${ }^{6}$, M.A.L. Leite ${ }^{23 \mathrm{~d}}$, R. Leitner ${ }^{125}$, D. Lellouch ${ }^{171}$, B. Lemmer ${ }^{53}$, V. Lendermann ${ }^{57 a}$, K.J.C. Leney ${ }^{144 \mathrm{~b}}$, T. Lenz ${ }^{104}$, G. Lenzen ${ }^{174}$, B. Lenzi ${ }^{29}$, K. Leonhardt ${ }^{43}$, S. Leontsinis ${ }^{9}$, F. Lepold ${ }^{57 \mathrm{a}}$, C. Leroy ${ }^{92}$, J.-R. Lessard ${ }^{168}$, C.G. Lester ${ }^{27}$, C.M. Lester ${ }^{119}$, J. Levêque ${ }^{4}$, D. Levin ${ }^{86}$, L.J. Levinson ${ }^{171}$, A. Lewis ${ }^{117}$, G.H. Lewis ${ }^{107}$, A.M. Leyko ${ }^{20}$, M. Leyton ${ }^{15}$, B. Li ${ }^{82}$, H. Li $^{172, u}$, S. Li ${ }^{32 b, v}$, X. Li ${ }^{86}$, Z. Liang ${ }^{117, w}$, H. Liao ${ }^{33}$, B. Liberti ${ }^{132 a}$, P. Lichard ${ }^{29}$, M. Lichtnecker ${ }^{97}$, K. Lie ${ }^{164}$, W. Liebig ${ }^{13}$, C. Limbach ${ }^{20}$, A. Limosani ${ }^{85}$, M. Limper ${ }^{61}$, S.C. Lin ${ }^{150, x}$, F. Linde ${ }^{104}$, J.T. Linnemann ${ }^{87}$, E. Lipeles ${ }^{119}$, A. Lipniacka ${ }^{13}$, T.M. Liss ${ }^{164}$, D. Lissauer ${ }^{24}$, A. Lister ${ }^{48}$, A.M. Litke ${ }^{136}$, C. Liu ${ }^{28}$, D. Liu ${ }^{150}$, H. Liu ${ }^{86}$, J.B. Liu ${ }^{86}$, L. Liu ${ }^{86}$, M. Liu ${ }^{32 \mathrm{~b}}$, Y. Liu ${ }^{32 b}$, M. Livan ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, S.S.A. Livermore ${ }^{117}$, A. Lleres ${ }^{54}$, J. Llorente Merino ${ }^{79}$, S.L. Lloyd ${ }^{74}$, E. Lobodzinska ${ }^{41}$, P. Loch ${ }^{6}$, W.S. Lockman ${ }^{136}$, T. Loddenkoetter ${ }^{20}$, F.K. Loebinger ${ }^{81}$, A. Loginov ${ }^{175}$, C.W. Loh ${ }^{167}$, T. Lohse ${ }^{15}$, K. Lohwasser ${ }^{47}$, M. Lokajicek ${ }^{124}$, V.P. Lombardo ${ }^{4}$, R.E. Long ${ }^{70}$, L. Lopes ${ }^{1233 a}$, D. Lopez Mateos ${ }^{56}$, J. Lorenz ${ }^{97}$, N. Lorenzo Martinez ${ }^{114}$, M. Losada ${ }^{161}$, P. Loscutoff ${ }^{14}$, F. Lo Sterzo ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, M.J. Losty ${ }^{158 \mathrm{a}, *}$, X. Lou ${ }^{40}$, A. Lounis ${ }^{114}$, K.F. Loureiro ${ }^{161}$, J. Love ${ }^{5}$, P.A. Love ${ }^{70}$, A.J. Lowe ${ }^{142, e}$, F. Lu $^{32 \mathrm{a}}$, H.J. Lubatti ${ }^{137}$, C. Luci ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, A. Lucotte ${ }^{54}$, A. Ludwig ${ }^{43}$, D. Ludwig ${ }^{41}$, I. Ludwig ${ }^{47}$, J. Ludwig ${ }^{47}$, F. Luehring ${ }^{59}$, G. Luijckx ${ }^{104}$, W. Lukas ${ }^{60}$, D. Lumb ${ }^{47}$, L. Luminari ${ }^{131 a}$, E. Lund ${ }^{116}$, B. Lund-Jensen ${ }^{146}$, B. Lundberg ${ }^{78}$, J. Lundberg ${ }^{145 a, 145 b}$, O. Lundberg ${ }^{145 a, 145 b}$, J. Lundquist ${ }^{35}$, M. Lungwitz ${ }^{80}$, D. Lynn ${ }^{24}$, E. Lytken ${ }^{78}$, H. Ma ${ }^{24}$, L.L. Ma ${ }^{172}$, G. Maccarrone ${ }^{46}$, A. Macchiolo ${ }^{98}$, B. Maček ${ }^{73}$, J. Machado Miguens ${ }^{123 a}$, R. Mackeprang ${ }^{35}$, R.J. Madaras ${ }^{14}$, H.J. Maddocks ${ }^{70}$, W.F. Mader ${ }^{43}$, R. Maenner ${ }^{57 \mathrm{c}}$, T. Maeno ${ }^{24}$, P. Mättig ${ }^{174}$, S. Mättig ${ }^{80}$, L. Magnoni ${ }^{162}$, E. Magradze ${ }^{53}$, K. Mahboubi ${ }^{47}$, S. Mahmoud ${ }^{72}$, G. Mahout ${ }^{17}$, C. Maiani ${ }^{135}$, C. Maidantchik ${ }^{23 a}$, A. Maio ${ }^{123 a, b}$, S. Majewski ${ }^{24}$, Y. Makida ${ }^{64}$, N. Makovec ${ }^{114}$, P. Mal ${ }^{135}$, B. Malaescu ${ }^{29}$, Pa. Malecki ${ }^{38}$, P. Malecki ${ }^{38}$, V.P. Maleev ${ }^{120}$, F. Malek ${ }^{54}$, U. Mallik ${ }^{61}$, D. Malon ${ }^{5}$, C. Malone ${ }^{142}$, S. Maltezos ${ }^{9}$, V. Malyshev ${ }^{106}$, S. Malyukov ${ }^{29}$, R. Mameghani ${ }^{97}$, J. Mamuzic ${ }^{12 \mathrm{~b}}$, A. Manabe ${ }^{64}$, L. Mandelli ${ }^{88 \mathrm{a}}$, I. Mandić ${ }^{73}$, R. Mandrysch ${ }^{15}$, J. Maneira ${ }^{123 a}$, A. Manfredini ${ }^{98}$, P.S. Mangeard ${ }^{87}$, L. Manhaes de Andrade Filho ${ }^{23 b}$,
J.A. Manjarres Ramos ${ }^{135}$, A. Mann ${ }^{53}$, P.M. Manning ${ }^{136}$, A. Manousakis-Katsikakis ${ }^{8}$, B. Mansoulie ${ }^{135}$, A. Mapelli ${ }^{29}$, L. Mapelli ${ }^{29}$, L. March ${ }^{79}$, J.F. Marchand ${ }^{28}$, F. Marchese ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, G. Marchiori ${ }^{77}$, M. Marcisovsky ${ }^{124}$, C.P. Marino ${ }^{168}$, F. Marroquim ${ }^{23 a}$, Z. Marshall ${ }^{29}$, F.K. Martens ${ }^{157}$, L.F. Marti ${ }^{16}$, S. Marti-Garcia ${ }^{166}$, B. Martin ${ }^{29}$, B. Martin ${ }^{87}$, J.P. Martin ${ }^{92}$, T.A. Martin ${ }^{17}$, V.J. Martin ${ }^{45}$, B. Martin dit Latour ${ }^{48}$, S. Martin-Haugh ${ }^{148}$, M. Martinez ${ }^{11}$, V. Martinez Outschoorn ${ }^{56}$, A.C. Martyniuk ${ }^{168}$, M. Marx ${ }^{81}$, F. Marzano ${ }^{\text {131a }}$, A. Marzin ${ }^{110}$, L. Masetti ${ }^{80}$, T. Mashimo ${ }^{154}$,
R. Mashinistov ${ }^{93}$, J. Masik ${ }^{81}$, A.L. Maslennikov ${ }^{106}$, I. Massa ${ }^{19 a}$, 19b , G. Massaro ${ }^{104}$, N. Massol ${ }^{4}$, P. Mastrandrea ${ }^{147}$, A. Mastroberardino ${ }^{36 a, 36 b}$, T. Masubuchi ${ }^{154}$, P. Matricon ${ }^{114}$, H. Matsunaga ${ }^{154}$, T. Matsushita ${ }^{65}$, C. Mattravers ${ }^{117, c}$, J. Maurer ${ }^{82}$, S.J. Maxfield ${ }^{72}$, A. Mayne ${ }^{138}$, R. Mazini ${ }^{150}$, M. Mazur ${ }^{20}$, L. Mazzaferro ${ }^{132 a, 132 b}$, M. Mazzanti ${ }^{88 \mathrm{a}}$, J. Mc Donald ${ }^{84}$, S.P. Mc Kee ${ }^{86}$, A. McCarn ${ }^{164}$, R.L. McCarthy ${ }^{147}$, T.G. McCarthy ${ }^{28}$, N.A. McCubbin ${ }^{128}$, K.W. McFarlane ${ }^{55, *}$, J.A. Mcfayden ${ }^{138}$, G. Mchedlidze ${ }^{50 \mathrm{~b}}$, T. Mclaughlan ${ }^{17}$, S.J. McMahon ${ }^{128}$, R.A. McPherson ${ }^{168, k}$, A. Meade ${ }^{83}$, J. Mechnich ${ }^{104}$, M. Mechtel ${ }^{174}$, M. Medinnis ${ }^{41}$, R. Meera-Lebbai ${ }^{110}$, T. Meguro ${ }^{115}$, R. Mehdiyev ${ }^{92}$, S. Mehlhase ${ }^{35}$, A. Mehta ${ }^{72}$, K. Meier ${ }^{57 \mathrm{a}}$, B. Meirose ${ }^{78}$, C. Melachrinos ${ }^{30}$, B.R. Mellado Garcia ${ }^{172}$, F. Meloni ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, L. Mendoza Navas ${ }^{161}$, Z. Meng ${ }^{150, u}$, A. Mengarelli ${ }^{19 a, 19 b}$, S. Menke ${ }^{98}$, E. Meoni ${ }^{160}$, K.M. Mercurio ${ }^{56}$, P. Mermod ${ }^{48}$, L. Merola ${ }^{101 a, 101 b}$, C. Meroni ${ }^{88 a}$, F.S. Merritt ${ }^{30}$, H. Merritt ${ }^{108}$, A. Messina ${ }^{29, y}$, J. Metcalfe ${ }^{24}$, A.S. Mete ${ }^{162}$, C. Meyer ${ }^{80}$, C. Meyer ${ }^{30}$, J.-P. Meyer ${ }^{135}$, J. Meyer ${ }^{173}$, J. Meyer ${ }^{53}$, T.C. Meyer ${ }^{29}$, J. Miao ${ }^{32 \mathrm{~d}}$, S. Michal ${ }^{29}$, L. Micu ${ }^{25 a}$, R.P. Middleton ${ }^{128}$, S. Migas ${ }^{72}$, L. Mijović ${ }^{135}$, G. Mikenberg ${ }^{171}$, M. Mikestikova ${ }^{124}$, M. Mikuž ${ }^{73}$, D.W. Miller ${ }^{30}$, R.J. Miller ${ }^{87}$, W.J. Mills ${ }^{167}$, C. Mills ${ }^{56}$, A. Milov ${ }^{171}$, D.A. Milstead ${ }^{145 a, 145 b}$, D. Milstein ${ }^{171}$, A.A. Minaenko ${ }^{127}$, M. Miñano Moya ${ }^{166}$, I.A. Minashvili ${ }^{63}$, A.I. Mincer ${ }^{107}$, B. Mindur ${ }^{37}$, M. Mineev ${ }^{63}$, Y. Ming ${ }^{172}$, L.M. Mir ${ }^{11}$, G. Mirabelli ${ }^{131}{ }^{13}$, J. Mitrevski ${ }^{136}$, V.A. Mitsou ${ }^{166}$, S. Mitsui ${ }^{64}$, P.S. Miyagawa ${ }^{138}$, J.U. Mjörnmark ${ }^{78}$, T. Moa ${ }^{145 a, 145 b}$, V. Moeller ${ }^{27}$, K. Mönig ${ }^{41}$, N. Möser ${ }^{20}$, S. Mohapatra ${ }^{147}$, W. Mohr ${ }^{47}$, R. Moles-Valls ${ }^{166}$, A. Molfetas ${ }^{29}$, J. Monk ${ }^{76}$, E. Monnier ${ }^{82}$, J. Montejo Berlingen ${ }^{11}$, F. Monticelli ${ }^{69}$, S. Monzani ${ }^{\text {19a, }}$, ${ }^{\text {, }}$, R.W. Moore ${ }^{2}$, G.F. Moorhead ${ }^{85}$, C. Mora Herrera ${ }^{48}$, A. Moraes ${ }^{52}$, N. Morange ${ }^{135}$, J. Morel ${ }^{53}$, G. Morello ${ }^{36 a, 36 \mathrm{~b}}$, D. Moreno ${ }^{80}$, M. Moreno Llácer ${ }^{166}$, P. Morettini ${ }^{49 a}$, M. Morgenstern ${ }^{43}$, M. Morii ${ }^{56}$, A.K. Morley ${ }^{29}$, G. Mornacchi ${ }^{29}$, J.D. Morris ${ }^{74}$, L. Morvaj ${ }^{100}$, H.G. Moser ${ }^{98}$, M. Mosidze ${ }^{50 b}$, J. Moss ${ }^{108}$, R. Mount ${ }^{142}$, E. Mountricha ${ }^{9, z}$, S.V. Mouraviev ${ }^{93, *}$, E.J.W. Moyse ${ }^{83}$, F. Mueller ${ }^{57 \mathrm{a}}$, J. Mueller ${ }^{122}$, K. Mueller ${ }^{20}$, T.A. Müller ${ }^{97}$, T. Mueller ${ }^{80}$, D. Muenstermann ${ }^{29}$, Y. Munwes ${ }^{152}$, W.J. Murray ${ }^{128}$, I. Mussche ${ }^{104}$, E. Musto ${ }^{101 a, 101 b}$, A.G. Myagkov ${ }^{127}$, M. Myska ${ }^{124}$, J. Nadal ${ }^{11}$, K. Nagai ${ }^{159}$, R. Nagai ${ }^{156}$, K. Nagano ${ }^{64}$, A. Nagarkar ${ }^{108}$, Y. Nagasaka ${ }^{58}$, M. Nagel ${ }^{98}$, A.M. Nairz ${ }^{29}$, Y. Nakahama ${ }^{29}$, K. Nakamura ${ }^{154}$, T. Nakamura ${ }^{154}$, I. Nakano ${ }^{109}$, G. Nanava ${ }^{20}$, A. Napier ${ }^{160}$, R. Narayan ${ }^{57 b}$, M. Nash ${ }^{76, c}$, T. Nattermann ${ }^{20}$, T. Naumann ${ }^{41}$,
 S. Nektarijevic ${ }^{48}$, A. Nelson ${ }^{162}$, T.K. Nelson ${ }^{142}$, S. Nemecek ${ }^{124}$, P. Nemethy ${ }^{107}$, A.A. Nepomuceno ${ }^{23 a}$, M. Nessi ${ }^{29, a a}$, M.S. Neubauer ${ }^{164}$, M. Neumann ${ }^{174}$, A. Neusiedl ${ }^{80}$, R.M. Neves ${ }^{107}$, P. Nevski ${ }^{24}$, F.M. Newcomer ${ }^{119}$, P.R. Newman ${ }^{17}$, V. Nguyen Thi Hong ${ }^{135}$, R.B. Nickerson ${ }^{117}$, R. Nicolaidou ${ }^{135}$, B. Nicquevert ${ }^{29}$, F. Niedercorn ${ }^{114}$, J. Nielsen ${ }^{136}$, N. Nikiforou ${ }^{34}$, A. Nikiforov ${ }^{15}$, V. Nikolaenko ${ }^{127}$, I. Nikolic-Audit ${ }^{77}$, K. Nikolics ${ }^{48}$, K. Nikolopoulos ${ }^{17}$, H. Nilsen ${ }^{47}$, P. Nilsson ${ }^{7}$, Y. Ninomiya ${ }^{154}$, A. Nisati ${ }^{131 a}$, R. Nisius ${ }^{98}$, T. Nobe ${ }^{156}$, L. Nodulman ${ }^{5}$, M. Nomachi ${ }^{115}$, I. Nomidis ${ }^{153}$, S. Norberg ${ }^{110}$, M. Nordberg ${ }^{29}$, P.R. Norton ${ }^{128}$, J. Novakova ${ }^{125}$, M. Nozaki ${ }^{64}$, L. Nozka ${ }^{112}$, I.M. Nugent ${ }^{158 a}$, A.-E. Nuncio-Quiroz ${ }^{20}$, G. Nunes Hanninger ${ }^{85}$, T. Nunnemann ${ }^{97}$, E. Nurse ${ }^{76}$, B.J. O'Brien ${ }^{45}$, S.W. O'Neale ${ }^{17, *}$, D.C. O'Neil ${ }^{141}$, V. O'Shea ${ }^{52}$, L.B. Oakes ${ }^{97}$, F.G. Oakham ${ }^{28, d^{\prime}}$, H. Oberlack ${ }^{98}$, J. Ocariz ${ }^{77}$, A. Ochi ${ }^{65}$, S. Oda ${ }^{68}$, S. Odaka ${ }^{64}$, J. Odier ${ }^{82}$, H. Ogren ${ }^{59}$, A. Oh ${ }^{81}$, S.H. Oh ${ }^{44}$, C.C. Ohm ${ }^{29}$, T. Ohshima ${ }^{100}$, H. Okawa ${ }^{24}$, Y. Okumura ${ }^{30}$, T. Okuyama ${ }^{154}$, A. Olariu ${ }^{25 a}$, A.G. Olchevski ${ }^{63}$, S.A. Olivares Pino ${ }^{31 a}$, M. Oliveira ${ }^{123 \mathrm{a}, h}$, D. Oliveira Damazio ${ }^{24}$, E. Oliver Garcia ${ }^{166}$, D. Olivito ${ }^{119}$, A. Olszewski 38 , J. Olszowska ${ }^{38}$, A. Onofre ${ }^{123 a, a b}$, P.U.E. Onyisi ${ }^{30}$, C.J. Oram ${ }^{158 \mathrm{Ba}}$, M.J. Oreglia ${ }^{30}$, Y. Oren ${ }^{152}$, D. Orestano ${ }^{1333^{2}, 133 \mathrm{~b}}$, N. Orlando ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, I. Orlov ${ }^{106}$, C. Oropeza Barrera ${ }^{52}$, R.S. Orr ${ }^{157}$, B. Osculati ${ }^{49 a, 49 \mathrm{~b}}$, R. Ospanov ${ }^{119}$, C. Osuna ${ }^{11}$, G. Otero y Garzon ${ }^{26}$, J.P. Ottersbach ${ }^{104}$, M. Ouchrif ${ }^{134 d}$, E.A. Ouellette ${ }^{168}$, F. Ould-Saada ${ }^{116}$, A. Ouraou ${ }^{135}$, Q. Ouyang ${ }^{32 \mathrm{a}}$, A. Ovcharova ${ }^{14}$, M. Owen ${ }^{81}$, S. Owen ${ }^{138}$, V.E. Ozcan ${ }^{18 \mathrm{Ba}}$, N. Ozturk ${ }^{7}$, A. Pacheco Pages ${ }^{11}$, C. Padilla Aranda ${ }^{11}$, S. Pagan Griso ${ }^{14}$, E. Paganis ${ }^{138}$, C. Pahl ${ }^{98}$, F. Paige ${ }^{24}$, P. Pais ${ }^{83}$, K. Pajchel ${ }^{116}$, G. Palacino ${ }^{158 b}$, C.P. Paleari ${ }^{6}$, S. Palestini ${ }^{29}$, D. Pallin ${ }^{33}$, A. Palma ${ }^{123 a}$, J.D. Palmer ${ }^{17}$, Y.B. Pan ${ }^{172}$, E. Panagiotopoulou ${ }^{9}$, P. Pani ${ }^{104}$, N. Panikashvili ${ }^{86}$, S. Panitkin ${ }^{24}$, D. Pantea ${ }^{25 a}$, A. Papadelis ${ }^{145 a}$, Th.D. Papadopoulou ${ }^{9}$, A. Paramonov ${ }^{5}$, D. Paredes Hernandez ${ }^{33}$, W. Park ${ }^{24, a c}$, M.A. Parker ${ }^{27}$, F. Parodi ${ }^{49 a, 49 b}$, J.A. Parsons ${ }^{34}$, U. Parzefall ${ }^{47}$, S. Pashapour ${ }^{53}$, E. Pasqualucci ${ }^{131 \mathrm{a}}$, S. Passaggio ${ }^{49 a}$, A. Passeri ${ }^{133 a}$, F. Pastore ${ }^{133 a, 133 b, *, ~ F r . ~ P a s t o r e ~}{ }^{75}$, G. Pásztor ${ }^{48, a d}$, S. Pataraia ${ }^{174}$, N. Patel ${ }^{149}$, J.R. Pater ${ }^{81}$, S. Patricelli ${ }^{101 a, 101 b}$, T. Pauly ${ }^{29}$, M. Pecsy ${ }^{143 a}$, S. Pedraza Lopez ${ }^{166}$, M.I. Pedraza Morales ${ }^{172}$, S.V. Peleganchuk ${ }^{106}$, D. Pelikan ${ }^{165}$, H. Peng ${ }^{32 \mathrm{~b}}$, B. Penning ${ }^{30}$, A. Penson ${ }^{34}$, J. Penwell ${ }^{59}$, M. Perantoni ${ }^{23 a}$, K. Perez ${ }^{34, a e}$, T. Perez Cavalcanti ${ }^{41}$, E. Perez Codina ${ }^{158 a}$,
M.T. Pérez García-Estañ ${ }^{166}$, V. Perez Reale ${ }^{34}$, L. Perini ${ }^{88 a, 88 b}$, H. Pernegger ${ }^{29}$, R. Perrino ${ }^{71 a}$, P. Perrodo ${ }^{4}$, V.D. Peshekhonov ${ }^{63}$, K. Peters ${ }^{29}$, B.A. Petersen ${ }^{29}$, J. Petersen ${ }^{29}$, T.C. Petersen ${ }^{35}$, E. Petit ${ }^{4}$, A. Petridis ${ }^{153}$, C. Petridou ${ }^{153}$, E. Petrolo ${ }^{131 \mathrm{a}}$, F. Petrucci ${ }^{133 a, 133 b}$, D. Petschull ${ }^{41}$, M. Petteni ${ }^{141}$, R. Pezoa ${ }^{31 b}$, A. Phan ${ }^{85}$, P.W. Phillips ${ }^{128}$, G. Piacquadio ${ }^{29}$, A. Picazio ${ }^{48}$, E. Piccaro ${ }^{74}$, M. Piccinini ${ }^{19 a}$, 19b , S.M. Piec ${ }^{41}$, R. Piegaia ${ }^{26}$, D.T. Pignotti ${ }^{108}$, J.E. Pilcher ${ }^{30}$, A.D. Pilkington ${ }^{81}$, J. Pina ${ }^{123 a, b}$, M. Pinamonti ${ }^{163 a, 163 \mathrm{c}}$, A. Pinder ${ }^{117}$, J.L. Pinfold ${ }^{2}$, B. Pinto ${ }^{123 a}$, C. Pizio ${ }^{88 a, 88 b}$, M. Plamondon ${ }^{168}$, M.-A. Pleier ${ }^{24}$, E. Plotnikova ${ }^{63}$, A. Poblaguev ${ }^{24}$, S. Poddar ${ }^{57 \mathrm{a}}$, F. Podlyski ${ }^{33}$, L. Poggioli ${ }^{114}$, D. Pohl ${ }^{20}$, M. Pohl ${ }^{48}$, G. Polesello ${ }^{118 a}$, A. Policicchio ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, A. Polini ${ }^{19 \mathrm{a}}$, J. Poll ${ }^{74}$, V. Polychronakos ${ }^{24}$, D. Pomeroy ${ }^{22}$, K. Pommès ${ }^{29}$, L. Pontecorvo ${ }^{131 a}$, B.G. Pope ${ }^{87}$, G.A. Popeneciu ${ }^{25 a}$, D.S. Popovic ${ }^{12 \mathrm{a}}$, A. Poppleton ${ }^{29}$, X. Portell Bueso ${ }^{29}$, G.E. Pospelov ${ }^{98}$, S. Pospisil ${ }^{126}$, I.N. Potrap ${ }^{98}$, C.J. Potter ${ }^{148}$, C.T. Potter ${ }^{113}$, G. Poulard ${ }^{29}$, J. Poveda ${ }^{59}$, V. Pozdnyakov ${ }^{63}$, R. Prabhu ${ }^{76}$, P. Pralavorio ${ }^{82}$, A. Pranko ${ }^{14}$, S. Prasad ${ }^{29}$, R. Pravahan ${ }^{24}$, S. Prell ${ }^{62}$, K. Pretzl ${ }^{16}$, D. Price ${ }^{59}$, J. Price ${ }^{72}$, L.E. Price ${ }^{5}$, D. Prieur ${ }^{122}$, M. Primavera ${ }^{71 a}$, K. Prokofiev ${ }^{107}$, F. Prokoshin ${ }^{31 b}$, S. Protopopescu ${ }^{24}$, J. Proudfoot ${ }^{5}$, X. Prudent ${ }^{43}$, M. Przybycien ${ }^{37}$, H. Przysiezniak ${ }^{4}$, S. Psoroulas ${ }^{20}$, E. Ptacek ${ }^{113}$, E. Pueschel ${ }^{83}$, J. Purdham ${ }^{86}$, M. Purohit ${ }^{24, a c}$, P. Puzo ${ }^{114}$, Y. Pylypchenko ${ }^{61}$, J. Qian ${ }^{86}$, A. Quadt ${ }^{53}$, D.R. Quarrie ${ }^{14}$, W.B. Quayle ${ }^{172}$, F. Quinonez ${ }^{31 a}$, M. Raas ${ }^{103}$, V. Radeka ${ }^{24}$, V. Radescu ${ }^{41}$, P. Radloff ${ }^{113}$, T. Rador ${ }^{18 a}$, F. Ragusa ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, G. Rahal ${ }^{177}$, A.M. Rahimi ${ }^{108}$, D. Rahm ${ }^{24}$, S. Rajagopalan ${ }^{24}$, M. Rammensee ${ }^{47}$, M. Rammes ${ }^{140}$, A.S. Randle-Conde ${ }^{39}$, K. Randrianarivony ${ }^{28}$, F. Rauscher ${ }^{97}$, T.C. Rave ${ }^{47}$, M. Raymond ${ }^{29}$, A.L. Read ${ }^{116}$, D.M. Rebuzzi ${ }^{118 a, 118 \mathrm{~b}}$, A. Redelbach ${ }^{173}$, G. Redlinger ${ }^{24}$, R. Reece ${ }^{119}$, K. Reeves ${ }^{40}$, E. Reinherz-Aronis ${ }^{152}$, A. Reinsch ${ }^{113}$, I. Reisinger ${ }^{42}$, C. Rembser ${ }^{29}$, Z.L. Ren ${ }^{150}$, A. Renaud ${ }^{114}$, M. Rescigno ${ }^{131 a}$, S. Resconi ${ }^{88 a}$, B. Resende ${ }^{135}$, P. Réznicek ${ }^{97}$, R. Rezvani ${ }^{157}$, R. Richter ${ }^{98}$, E. Richter-Was ${ }^{4, a f}$, M. Ridel ${ }^{77}$, M. Rijpstra ${ }^{104}$, M. Rijssenbeek ${ }^{147}$, A. Rimoldi ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, L. Rinaldi ${ }^{19 \mathrm{a}}$, R.R. Rios ${ }^{39}$, I. Riu ${ }^{11}$, G. Rivoltella ${ }^{88 a, 88 b}$, F. Rizatdinova ${ }^{1111}$, E. Rizvi ${ }^{74}$, S.H. Robertson ${ }^{84, k}$, A. Robichaud-Veronneau ${ }^{117}$, D. Robinson ${ }^{27}$, J.E.M. Robinson ${ }^{81}$, A. Robson ${ }^{52}$, J.G. Rocha de Lima ${ }^{105}$, C. Roda ${ }^{121 a, 121 b}$, D. Roda Dos Santos ${ }^{29}$, A. Roe ${ }^{53}$, S. Roe ${ }^{29}$, O. Røhne ${ }^{116}$, S. Rolli ${ }^{160}$, A. Romaniouk ${ }^{95}$, M. Romano ${ }^{19 a, 19 b}$, G. Romeo ${ }^{26}$, E. Romero Adam ${ }^{166}$, N. Rompotis ${ }^{137}$, L. Roos ${ }^{77}$, E. Ros ${ }^{166}$, S. Rosati ${ }^{131 a}$, K. Rosbach ${ }^{48}$, A. Rose ${ }^{148}$, M. Rose ${ }^{75}$, G.A. Rosenbaum ${ }^{157}$, E.I. Rosenberg ${ }^{62}$, P.L. Rosendahl ${ }^{13}$, O. Rosenthal ${ }^{140}$, L. Rosselet ${ }^{48}$, V. Rossetti ${ }^{11}$, E. Rossi ${ }^{131 a, 131 b}$, L.P. Rossi ${ }^{49 a}$, M. Rotaru ${ }^{25 a}$, I. Roth ${ }^{171}$, J. Rothberg ${ }^{137}$, D. Rousseau ${ }^{114}$, C.R. Royon ${ }^{135}$, A. Rozanov ${ }^{82}$, Y. Rozen ${ }^{151}$, X. Ruan ${ }^{32 a, a g}$, F. Rubbo ${ }^{11}$, I. Rubinskiy ${ }^{41}$, N. Ruckstuhl ${ }^{104}$, V.I. Rud ${ }^{96}$, J.T. Ruderman ${ }^{137}$, ah , C. Rudolph ${ }^{43}$, G. Rudolph ${ }^{60}$, F. Rühr ${ }^{6}$, A. Ruiz-Martinez ${ }^{62}$, L. Rumyantsev ${ }^{63}$, Z. Rurikova ${ }^{47}$, N.A. Rusakovich ${ }^{63}$, J.P. Rutherfoord ${ }^{6}$, C. Ruwiedel ${ }^{14, *}$, P. Ruzicka ${ }^{124}$, Y.F. Ryabov ${ }^{120}$, M. Rybar ${ }^{125}$, G. Rybkin ${ }^{114}$, N.C. Ryder ${ }^{117}$, A.F. Saavedra ${ }^{149}$, I. Sadeh ${ }^{152}$, H.F.-W. Sadrozinski ${ }^{136}$, R. Sadykov ${ }^{63}$, F. Safai Tehrani ${ }^{131 a}$, H. Sakamoto ${ }^{154}$, G. Salamanna ${ }^{74}$, A. Salamon ${ }^{132 \mathrm{a}}$, M. Saleem ${ }^{1110}$, D. Salek ${ }^{29}$, D. Salihagic ${ }^{98}$, A. Salnikov ${ }^{142}$, J. Salt ${ }^{166}$, B.M. Salvachua Ferrando ${ }^{5}$, D. Salvatore ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, F. Salvatore ${ }^{148}$, A. Salvucci ${ }^{103}$, A. Salzburger ${ }^{29}$, D. Sampsonidis ${ }^{153}$, B.H. Samset ${ }^{116}$, A. Sanchez ${ }^{101 a, 101 b}$, V. Sanchez Martinez ${ }^{166}$, H. Sandaker ${ }^{13}$, H.G. Sander ${ }^{80}$, M.P. Sanders ${ }^{97}$, M. Sandhoff ${ }^{174}$, T. Sandoval ${ }^{27}$, C. Sandoval ${ }^{161}$, R. Sandstroem ${ }^{98}$, D.P.C. Sankey ${ }^{128}$, A. Sansoni ${ }^{46}$, C. Santamarina Rios ${ }^{84}$, C. Santoni ${ }^{33}$,
 F. Sarri ${ }^{121 a, 121 b}$, G. Sartisohn ${ }^{174}$, O. Sasaki ${ }^{64}$, Y. Sasaki ${ }^{154}$, N. Sasao ${ }^{66}$, I. Satsounkevitch ${ }^{89}$, G. Sauvage ${ }^{4, *}$, E. Sauvan ${ }^{4}$, J.B. Sauvan ${ }^{114}$, P. Savard ${ }^{157, d}$, V. Savinov ${ }^{122}$, D.O. Savu ${ }^{29}$, L. Sawyer ${ }^{24, m}$, D.H. Saxon ${ }^{52}$, J. Saxon ${ }^{119}$, C. Sbarra ${ }^{19 a}$, A. Sbrizzi ${ }^{19 a, 19 b}$, D.A. Scannicchio ${ }^{162}$, M. Scarcella ${ }^{149}$, J. Schaarschmidt ${ }^{114}$, P. Schacht ${ }^{98}$, D. Schaefer ${ }^{119}$, U. Schäfer ${ }^{80}$, S. Schaepe ${ }^{20}$, S. Schaetzel ${ }^{57 \mathrm{~b}}$, A.C. Schaffer ${ }^{114}$, D. Schaile ${ }^{97}$, R.D. Schamberger ${ }^{147}$, A.G. Schamov ${ }^{106}$, V. Scharf ${ }^{57 a}$, V.A. Schegelsky ${ }^{120}$, D. Scheirich ${ }^{86}$, M. Schernau ${ }^{162}$, M.I. Scherzer ${ }^{34}$, C. Schiavi ${ }^{49 a}$, 49b , J. Schieck ${ }^{97}$, M. Schioppa ${ }^{36 a, 36 b}$, S. Schlenker ${ }^{29}$, E. Schmidt ${ }^{47}$, K. Schmieden ${ }^{20}$, C. Schmitt ${ }^{80}$, S. Schmitt ${ }^{57 \mathrm{~b}}$, M. Schmitz ${ }^{20}$, B. Schneider ${ }^{16}$, U. Schnoor ${ }^{43}$, A. Schoening ${ }^{57 \mathrm{~b}}$, A.L.S. Schorlemmer ${ }^{53}$, M. Schott ${ }^{29}$, D. Schouten ${ }^{158 a}$, J. Schovancova ${ }^{124}$, M. Schram ${ }^{84}$, C. Schroeder ${ }^{80}$, N. Schroer ${ }^{57 c}$, M.J. Schultens ${ }^{20}$, J. Schultes ${ }^{174}$, H.-C. Schultz-Coulon ${ }^{57 a}$, H. Schulz ${ }^{15}$, M. Schumacher ${ }^{47}$, B.A. Schumm ${ }^{136}$, Ph. Schune ${ }^{135}$, C. Schwanenberger ${ }^{81}$, A. Schwartzman ${ }^{142}$, Ph. Schwegler ${ }^{98}$, Ph. Schwemling ${ }^{77}$, R. Schwienhorst ${ }^{87}$, R. Schwierz ${ }^{43}$, J. Schwindling ${ }^{135}$, T. Schwindt ${ }^{20}$, M. Schwoerer ${ }^{4}$, G. Sciolla ${ }^{22}$, W.G. Scott ${ }^{128}$, J. Searcy ${ }^{113}$, G. Sedov ${ }^{41}$, E. Sedykh ${ }^{120}$, S.C. Seidel ${ }^{102}$, A. Seiden ${ }^{136}$, F. Seifert ${ }^{43}$, J.M. Seixas ${ }^{23 a}$, G. Sekhniaidze ${ }^{101 a}$, S.J. Sekula ${ }^{39}$, K.E. Selbach ${ }^{45}$, D.M. Seliverstov ${ }^{120}$, B. Sellden ${ }^{145 a}$, G. Sellers ${ }^{72}$, M. Seman ${ }^{143 b}$,
N. Semprini-Cesari ${ }^{19 a, 19 b}$, C. Serfon ${ }^{97}$, L. Serin ${ }^{114}$, L. Serkin ${ }^{53}$, R. Seuster ${ }^{98}$, H. Severini ${ }^{110}$, A. Sfyrla ${ }^{29}$, E. Shabalina ${ }^{53}$, M. Shamim ${ }^{113}$, L.Y. Shan ${ }^{32 a}$, J.T. Shank ${ }^{21}$, Q.T. Shao ${ }^{85}$, M. Shapiro ${ }^{14}$, P.B. Shatalov ${ }^{94}$, K. Shaw ${ }^{163 a, 163 c}$, D. Sherman ${ }^{175}$, P. Sherwood ${ }^{76}$, A. Shibata ${ }^{107}$, S. Shimizu ${ }^{100}$, M. Shimojima ${ }^{99}$, T. Shin ${ }^{55}$, M. Shiyakova ${ }^{63}$, A. Shmeleva ${ }^{93}$, M.J. Shochet ${ }^{30}$, D. Short ${ }^{117}$, S. Shrestha ${ }^{62}$, E. Shulga ${ }^{95}$, M.A. Shupe ${ }^{6}$, P. Sicho ${ }^{124}$, A. Sidoti ${ }^{131 a}$, F. Siegert ${ }^{47}$, Dj. Sijacki ${ }^{12 a}$, O. Silbert ${ }^{171}$, J. Silva ${ }^{123 a}$, Y. Silver ${ }^{152}$, D. Silverstein ${ }^{142}$, S.B. Silverstein ${ }^{145 a}$, V. Simak ${ }^{126}$, O. Simard ${ }^{135}$, Lj. Simic ${ }^{12 \mathrm{a}}$, S. Simion ${ }^{114}$, E. Simioni ${ }^{80}$, B. Simmons ${ }^{76}$, R. Simoniello ${ }^{88 a, 88 b}$, M. Simonyan ${ }^{35}$, P. Sinervo ${ }^{157}$, N.B. Sinev ${ }^{113}$, V. Sipica ${ }^{140}$, G. Siragusa ${ }^{173}$, A. Sircar ${ }^{24}$, A.N. Sisakyan ${ }^{63, *}$, S.Yu. Sivoklokov ${ }^{96}$, J. Sjölin ${ }^{145 a, 145 b}$, T.B. Sjursen ${ }^{13}$, L.A. Skinnari ${ }^{14}$, H.P. Skottowe ${ }^{56}$, K. Skovpen ${ }^{106}$, P. Skubic ${ }^{110}$, M. Slater ${ }^{17}$, T. Slavicek ${ }^{126}$, K. Sliwa ${ }^{160}$, V. Smakhtin ${ }^{171}$, B.H. Smart ${ }^{45}$, S.Yu. Smirnov ${ }^{95}$, Y. Smirnov ${ }^{95}$, L.N. Smirnova ${ }^{96}$, O. Smirnova ${ }^{78}$, B.C. Smith ${ }^{56}$, D. Smith ${ }^{142}$, K.M. Smith ${ }^{52}$, M. Smizanska ${ }^{70}$, K. Smolek ${ }^{126}$, A.A. Snesarev ${ }^{93}$, S.W. Snow ${ }^{81}$, J. Snow ${ }^{110}$, S. Snyder ${ }^{24}$, R. Sobie ${ }^{168, k}$, J. Sodomka ${ }^{126}$, A. Soffer ${ }^{152}$, C.A. Solans ${ }^{166}$, M. Solar ${ }^{126}$, J. Solc ${ }^{126}$, E.Yu. Soldatov ${ }^{95}$, U. Soldevila ${ }^{166}$, E. Solfaroli Camillocci ${ }^{131 a, 131 b}$, A.A. Solodkov ${ }^{127}$, O.V. Solovyanov ${ }^{127}$, V. Solovyev ${ }^{120}$, N. Soni ${ }^{85}$, V. Sopko ${ }^{126}$, B. Sopko ${ }^{126}$, M. Sosebee ${ }^{7}$, R. Soualah ${ }^{163 a, 163 c}$, A. Soukharev ${ }^{106}$, S. Spagnolo ${ }^{71 a, 71 b}$, F. Spanò ${ }^{75}$, R. Spighi ${ }^{19 a}$, G. Spigo ${ }^{29}$, R. Spiwoks ${ }^{29}$, M. Spousta ${ }^{125, a i}$, T. Spreitzer ${ }^{157}$, B. Spurlock ${ }^{7}$, R.D. St. Denis ${ }^{52}$, J. Stahlman ${ }^{119}$, R. Stamen ${ }^{57 a}$, E. Stanecka ${ }^{38}$, R.W. Stanek ${ }^{5}$,
C. Stanescu ${ }^{133 a}$, M. Stanescu-Bellu ${ }^{41}$, S. Stapnes ${ }^{116}$, E.A. Starchenko ${ }^{127}$, J. Stark ${ }^{54}$, P. Staroba ${ }^{124}$, P. Starovoitov ${ }^{41}$, R. Staszewski ${ }^{38}$, A. Staude ${ }^{97}$, P. Stavina ${ }^{143 a, *}$, G. Steele ${ }^{52}$, P. Steinbach ${ }^{43}$, P. Steinberg ${ }^{24}$, I. Stekl ${ }^{126}$, B. Stelzer ${ }^{141}$, H.J. Stelzer ${ }^{87}$, O. Stelzer-Chilton ${ }^{158 \text { 8a, }}$, H. Stenzel ${ }^{51}$, S. Stern ${ }^{98}$, G.A. Stewart ${ }^{29}$, J.A. Stillings ${ }^{20}$, M.C. Stockton ${ }^{84}$, K. Stoerig ${ }^{47}$, G. Stoicea ${ }^{25 a}$, S. Stonjek ${ }^{98}$, P. Strachota ${ }^{125}$, A.R. Stradling ${ }^{7}$, A. Straessner ${ }^{\text {43 }}$, J. Strandberg ${ }^{146}$, S. Strandberg ${ }^{145 a, 145 \mathrm{~b}}$, A. Strandlie ${ }^{116}$, M. Strang ${ }^{108}$, E. Strauss ${ }^{142}$, M. Strauss ${ }^{110}$, P. Strizenec ${ }^{143 b}$, R. Ströhmer ${ }^{173}$, D.M. Strom ${ }^{113}$, J.A. Strong ${ }^{75, *}$, R. Stroynowski ${ }^{39}$, J. Strube ${ }^{128}$, B. Stugu ${ }^{13}$, I. Stumer ${ }^{24, *}$, J. Stupak ${ }^{147}$, P. Sturm ${ }^{174}$, N.A. Styles ${ }^{41}$, D.A. Soh ${ }^{150, w}$, D. Su ${ }^{142}$, HS. Subramania ${ }^{2}$, A. Succurro ${ }^{11}$, Y. Sugaya ${ }^{115}$, C. Suhr ${ }^{105}$, M. Suk ${ }^{125}$, V.V. Sulin ${ }^{93}$, S. Sultansoy ${ }^{3 d}$, T. Sumida ${ }^{66}$, X. Sun ${ }^{54}$, J.E. Sundermann ${ }^{47}$, K. Suruliz ${ }^{138}$, G. Susinno ${ }^{36 a, 36 \mathrm{~b}}$, M.R. Sutton ${ }^{148}$, Y. Suzuki ${ }^{64}$, Y. Suzuki ${ }^{65}$, M. Svatos ${ }^{124}$, S. Swedish ${ }^{167}$, I. Sykora ${ }^{143 a}$, T. Sykora ${ }^{125}$, J. Sánchez ${ }^{166}$, D. Ta ${ }^{104}$, K. Tackmann ${ }^{41}$,A. Taffard ${ }^{162}$, R. Tafirout ${ }^{158 a}$, N. Taiblum ${ }^{152}$, Y. Takahashi ${ }^{100}$, H. Takai ${ }^{24}$, R. Takashima ${ }^{67}$, H. Takeda ${ }^{65}$, T. Takeshita ${ }^{139}$, Y. Takubo ${ }^{64}$, M. Talby ${ }^{82}$, A. Talyshev ${ }^{106, f}$, M.C. Tamsett ${ }^{24}$, K.G. Tan ${ }^{85}$, J. Tanaka ${ }^{154}$, R. Tanaka ${ }^{114}$, S. Tanaka ${ }^{130}$, S. Tanaka ${ }^{64}$, A.J. Tanasijczuk ${ }^{141}$, K. Tani ${ }^{65}$, N. Tannoury ${ }^{82}$, S. Tapprogge ${ }^{80}$, D. Tardif ${ }^{157}$, S. Tarem ${ }^{151}$, F. Tarrade ${ }^{28}$, G.F. Tartarelli ${ }^{88 a}$, P. Tas ${ }^{125}$, M. Tasevsky ${ }^{124}$, E. Tassi ${ }^{366,36 b}$, M. Tatarkhanov ${ }^{14}$, Y. Tayalati ${ }^{134 d}$, C. Taylor ${ }^{76}$, F.E. Taylor ${ }^{91}$, G.N. Taylor ${ }^{85}$, W. Taylor ${ }^{158 \mathrm{~b}}$, M. Teinturier ${ }^{114}$, F.A. Teischinger ${ }^{29}$, M. Teixeira Dias Castanheira ${ }^{74}$, P. Teixeira-Dias ${ }^{75}$, K.K. Temming ${ }^{47}$, H. Ten Kate ${ }^{29}$, P.K. Teng ${ }^{150}$, S. Terada ${ }^{64}$, K. Terashi ${ }^{154}$, J. Terron ${ }^{79}$, M. Testa ${ }^{46}$, R.J. Teuscher ${ }^{157, k}$, J. Therhaag ${ }^{20}$, T. Theveneaux-Pelzer ${ }^{77}$, S. Thoma ${ }^{47}$, J.P. Thomas ${ }^{17}$, E.N. Thompson ${ }^{34}$, P.D. Thompson ${ }^{17}$, P.D. Thompson ${ }^{157}$, A.S. Thompson ${ }^{52}$, L.A. Thomsen ${ }^{35}$, E. Thomson ${ }^{119}$, M. Thomson ${ }^{27}$, W.M. Thong ${ }^{85}$, R.P. Thun ${ }^{86}$, F. Tian ${ }^{34}$, M.J. Tibbetts ${ }^{14}$, T. Tic ${ }^{124}$, V.O. Tikhomirov ${ }^{93}$, Y.A. Tikhonov ${ }^{106, f}$, S. Timoshenko ${ }^{95}$, P. Tipton ${ }^{175}$, S. Tisserant ${ }^{82}$, T. Todorov ${ }^{4}$, S. Todorova-Nova ${ }^{160}$, B. Toggerson ${ }^{162}$, J. Tojo ${ }^{68}$, S. Tokár ${ }^{143 a}$, K. Tokushuku ${ }^{64}$, K. Tollefson ${ }^{87}$, M. Tomoto ${ }^{100}$, L. Tompkins ${ }^{30}$, K. Toms ${ }^{102}$, A. Tonoyan ${ }^{13}$, C. Topfel ${ }^{16}$, N.D. Topilin ${ }^{63}$, I. Torchiani ${ }^{29}$, E. Torrence ${ }^{113}$, H. Torres ${ }^{77}$, E. Torró Pastor ${ }^{166}$, J. Toth ${ }^{82, a d}$, F. Touchard ${ }^{82}$, D.R. Tovey ${ }^{138}$, T. Trefzger ${ }^{173}$, L. Tremblet ${ }^{29}$,A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{158 a}$, S. Trincaz-Duvoid ${ }^{77}$, M.F. Tripiana ${ }^{69}$, N. Triplett ${ }^{24}$, W. Trischuk ${ }^{157}$, B. Trocmé ${ }^{54}$, C. Troncon ${ }^{88 \text { a a }}$, M. Trottier-McDonald ${ }^{141}$, M. Trzebinski ${ }^{38}$, A. Trzupek ${ }^{38}$, C. Tsarouchas ${ }^{29}$, J.C.-L. Tseng ${ }^{117}$, M. Tsiakiris ${ }^{104}$, P.V. Tsiareshka ${ }^{89}$, D. Tsionou ${ }^{4, a j}$, G. Tsipolitis ${ }^{9}$, S. Tsiskaridze ${ }^{11}$, V. Tsiskaridze ${ }^{47}$, E.G. Tskhadadze ${ }^{50 \mathrm{a}}$, I.I. Tsukerman ${ }^{94}$, V. Tsulaia ${ }^{14}$, J.-W. Tsung ${ }^{20}$, S. Tsuno ${ }^{64}$, D. Tsybychev ${ }^{147}$, A. Tua ${ }^{138}$, A. Tudorache ${ }^{25 a}$, V. Tudorache ${ }^{25 a}$, J.M. Tuggle ${ }^{30}$, M. Turala ${ }^{38}$, D. Turecek ${ }^{126}$, I. Turk Cakir ${ }^{3 \text { e }}$, E. Turlay ${ }^{104}$, R. Turra ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, P.M. Tuts ${ }^{34}$, A. Tykhonov ${ }^{73}$, M. Tylmad ${ }^{145 a}, 145 \mathrm{~b}$, M. Tyndel ${ }^{128}$, G. Tzanakos ${ }^{8}$, K. Uchida ${ }^{20}$, I. Ueda ${ }^{154}$, R. Ueno ${ }^{28}$, M. Ugland ${ }^{13}$, M. Uhlenbrock ${ }^{20}$, M. Uhrmacher ${ }^{53}$, F. Ukegawa ${ }^{159}$, G. Unal ${ }^{29}$, A. Undrus ${ }^{24}$, G. Unel ${ }^{162}$, Y. Unno ${ }^{64}$, D. Urbaniec ${ }^{34}$, G. Usai ${ }^{7}$, M. Uslenghi ${ }^{118 a, 118 b}$, L. Vacavant ${ }^{82}$, V. Vacek ${ }^{126}$, B. Vachon ${ }^{84}$, S. Vahsen ${ }^{14}$, J. Valenta ${ }^{124}$, S. Valentinetti ${ }^{19 a, 19 b}$, A. Valero ${ }^{166}$, S. Valkar ${ }^{125}$, E. Valladolid Gallego ${ }^{166}$, S. Vallecorsa ${ }^{151}$, J.A. Valls Ferrer ${ }^{166}$, R. Van Berg ${ }^{119}$, P.C. Van Der Deijl ${ }^{104}$, R. van der Geer ${ }^{104}$, H. van der Graaf ${ }^{104}$, R. Van Der Leeuw ${ }^{104}$, E. van der Poel ${ }^{104}$, D. van der Ster ${ }^{29}$, N. van Eldik ${ }^{29}$, P. van Gemmeren ${ }^{5}$,
I. van Vulpen ${ }^{104}$, M. Vanadia ${ }^{98}$, W. Vandelli ${ }^{29}$, A. Vaniachine ${ }^{5}$, P. Vankov ${ }^{41}$, F. Vannucci ${ }^{77}$, R. Vari ${ }^{131 a}$, E.W. Varnes ${ }^{6}$, T. Varol ${ }^{83}$, D. Varouchas ${ }^{14}$, A. Vartapetian ${ }^{7}$, K.E. Varvell ${ }^{149}$, V.I. Vassilakopoulos ${ }^{55}$, F. Vazeille ${ }^{33}$, T. Vazquez Schroeder ${ }^{53}$, G. Vegni ${ }^{88 a, 88 b}$, J.J. Veillet ${ }^{114}$, F. Veloso ${ }^{123 a}$, R. Veness ${ }^{29}$, S. Veneziano ${ }^{131 a}$, A. Ventura ${ }^{71 a, 71 b}$, D. Ventura ${ }^{83}$, M. Venturi ${ }^{47}$, N. Venturi ${ }^{157}$, V. Vercesi ${ }^{18 a}$, M. Verducci ${ }^{137}$, W. Verkerke ${ }^{104}$, J.C. Vermeulen ${ }^{104}$, A. Vest ${ }^{43}$, M.C. Vetterli ${ }^{141, d}$, I. Vichou ${ }^{164}$, T. Vickey ${ }^{144 \mathrm{~b}, a k}$, O.E. Vickey Boeriu ${ }^{144 \mathrm{~b}}$, G.H.A. Viehhauser ${ }^{117}$, S. Viel ${ }^{167}$, M. Villa ${ }^{19 a}$, 19b , M. Villaplana Perez ${ }^{166}$, E. Vilucchi ${ }^{46}$, M.G. Vincter ${ }^{28}$, E. Vinek ${ }^{29}$, V.B. Vinogradov ${ }^{63}$, M. Virchaux ${ }^{135, *}$, J. Virzi ${ }^{14}$, O. Vitells ${ }^{171}$, M. Viti ${ }^{41}$, I. Vivarelli ${ }^{47}$, F. Vives Vaque ${ }^{2}$, S. Vlachos ${ }^{9}$, D. Vladoiu ${ }^{97}$, M. Vlasak ${ }^{126}$, A. Vogel ${ }^{20}$, P. Vokac ${ }^{126}$, T. Volansky ${ }^{152}$, G. Volpi ${ }^{46}$, M. Volpi ${ }^{85}$, G. Volpini ${ }^{88 a}$, H. von der Schmitt ${ }^{98}$, H. von Radziewski ${ }^{47}$, E. von Toerne ${ }^{20}$, V. Vorobel ${ }^{125}$, V. Vorwerk ${ }^{11}$, M. Vos ${ }^{166}$, R. Voss ${ }^{29}$, T.T. Voss ${ }^{174}$, J.H. Vossebeld ${ }^{72}$, N. Vranjes ${ }^{135}$, M. Vranjes Milosavljevic ${ }^{104}$, V. Vrba ${ }^{124}$, M. Vreeswijk ${ }^{104}$, T. Vu Anh ${ }^{47}$, R. Vuillermet ${ }^{29}$, I. Vukotic ${ }^{30}$, W. Wagner ${ }^{174}$, P. Wagner ${ }^{119}$, H. Wahlen ${ }^{174}$, S. Wahrmund ${ }^{43}$, J. Wakabayashi ${ }^{100}$, S. Walch ${ }^{86}$, J. Walder ${ }^{70}$, R. Walker ${ }^{97}$, W. Walkowiak ${ }^{140}$, R. Wall ${ }^{175}$, P. Waller ${ }^{72}$, B. Walsh ${ }^{175}$, C. Wang ${ }^{44}$, H. Wang ${ }^{172}$, H. Wang ${ }^{32 \mathrm{~b}, \text { al }}$, J. Wang ${ }^{150}$, J. Wang ${ }^{54}$, R. Wang ${ }^{102}$, S.M. Wang ${ }^{150}$, T. Wang ${ }^{20}$, A. Warburton ${ }^{84}$, C.P. Ward ${ }^{27}$, M. Warsinsky ${ }^{47}$, A. Washbrook ${ }^{45}$, C. Wasicki ${ }^{41}$, I. Watanabe ${ }^{65}$, P.M. Watkins ${ }^{17}$, A.T. Watson ${ }^{17}$, I.J. Watson ${ }^{149}$, M.F. Watson ${ }^{17}$, G. Watts ${ }^{137}$, S. Watts ${ }^{81}$, A.T. Waugh ${ }^{149}$, B.M. Waugh ${ }^{76}$, M.S. Weber ${ }^{16}$, P. Weber ${ }^{53}$, A.R. Weidberg ${ }^{117}$, P. Weigell ${ }^{98}$, J. Weingarten ${ }^{53}$, C. Weiser ${ }^{47}$, H. Wellenstein ${ }^{22}$, P.S. Wells ${ }^{29}$, T. Wenaus ${ }^{24}$, D. Wendland ${ }^{15}$, Z. Weng ${ }^{150, w}$, T. Wengler ${ }^{29}$, S. Wenig ${ }^{29}$, N. Wermes ${ }^{20}$, M. Werner ${ }^{47}$, P. Werner ${ }^{29}$, M. Werth ${ }^{162}$, M. Wessels ${ }^{57 a}$, J. Wetter ${ }^{160}$, C. Weydert ${ }^{54}$, K. Whalen ${ }^{28}$, S.J. Wheeler-Ellis ${ }^{162}$, A. White ${ }^{7}$, M.J. White ${ }^{85}$, S. White ${ }^{121 a, 121 b}$, S.R. Whitehead ${ }^{117}$, D. Whiteson ${ }^{162}$, D. Whittington ${ }^{59}$, F. Wicek ${ }^{114}$, D. Wicke ${ }^{174}$, F.J. Wickens ${ }^{128}$, W. Wiedenmann ${ }^{172}$, M. Wielers ${ }^{128}$, P. Wienemann ${ }^{20}$, C. Wiglesworth ${ }^{74}$, L.A.M. Wiik-Fuchs ${ }^{47}$, P.A. Wijeratne ${ }^{76}$, A. Wildauer ${ }^{98}$, M.A. Wildt ${ }^{41, s}$, I. Wilhelm ${ }^{125}$, H.G. Wilkens ${ }^{29}$, J.Z. Will ${ }^{97}$, E. Williams ${ }^{34}$, H.H. Williams ${ }^{119}$, W. Willis ${ }^{34}$, S. Willocq ${ }^{83}$, J.A. Wilson ${ }^{17}$, M.G. Wilson ${ }^{142}$, A. Wilson ${ }^{86}$, I. Wingerter-Seez ${ }^{4}$, S. Winkelmann ${ }^{47}$, F. Winklmeier ${ }^{29}$, M. Wittgen ${ }^{142}$, S.J. Wollstadt ${ }^{80}$, M.W. Wolter ${ }^{38}$, H. Wolters ${ }^{123 a, h}$, W.C. Wong ${ }^{40}$, G. Wooden ${ }^{86}$, B.K. Wosiek ${ }^{38}$, J. Wotschack ${ }^{29}$, M.J. Woudstra ${ }^{81}$, K.W. Wozniak ${ }^{38}$, K. Wraight ${ }^{52}$, M. Wright ${ }^{52}$, B. Wrona ${ }^{72}$, S.L. Wu ${ }^{172}$, X. Wu ${ }^{48}$, Y. Wu ${ }^{32 b, a m}$, E. Wulf ${ }^{34}$, B.M. Wynne ${ }^{45}$, S. Xella ${ }^{35}$, M. Xiao ${ }^{135}$, S. Xie ${ }^{47}$, C. Xu ${ }^{32 b, z}$, D. Xu ${ }^{138}$, B. Yabsley ${ }^{149}$, S. Yacoob ${ }^{144 a, a n}$, M. Yamada ${ }^{64}$, H. Yamaguchi ${ }^{154}$, A. Yamamoto ${ }^{64}$, K. Yamamoto ${ }^{62}$, S. Yamamoto ${ }^{154}$, T. Yamamura ${ }^{154}$, T. Yamanaka ${ }^{154}$, J. Yamaoka ${ }^{44}$, T. Yamazaki ${ }^{154}$, Y. Yamazaki ${ }^{65}$, Z. Yan ${ }^{21}$, H. Yang ${ }^{86}$, U.K. Yang ${ }^{81}$, Y. Yang ${ }^{59}$, Z. Yang ${ }^{145 a, 145 b}$, S. Yanush ${ }^{90}$, L. Yao ${ }^{32 \mathrm{a}}$, Y. Yao ${ }^{14}$, Y. Yasu ${ }^{64}$, G.V. Ybeles Smit ${ }^{129}$, J. Ye ${ }^{39}$, S. Ye ${ }^{24}$, M. Yilmaz ${ }^{3 c}$, R. Yoosoofmiya ${ }^{122}$, K. Yorita ${ }^{170}$, R. Yoshida ${ }^{5}$, C. Young ${ }^{142}$, C.J. Young ${ }^{117}$, S. Youssef ${ }^{21}$, D. Yu ${ }^{24}$, J. Yu ${ }^{7}$, J. Yu ${ }^{111}$, L. Yuan ${ }^{65}$, A. Yurkewicz ${ }^{105}$, B. Zabinski ${ }^{38}$, R. Zaidan ${ }^{61}$, A.M. Zaitsev ${ }^{\text {127 }}$, Z. Zajacova ${ }^{29}$, L. Zanello ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, D. Zanzi ${ }^{98}$, A. Zaytsev ${ }^{24}$, C. Zeitnitz ${ }^{174}$, M. Zeman ${ }^{124}$, A. Zemla ${ }^{38}$, C. Zendler ${ }^{20}$, O. Zenin ${ }^{127}$, T. Ženiš ${ }^{143 a}$, Z. Zinonos ${ }^{121 a, 121 b}$, S. Zenz ${ }^{14}$, D. Zerwas ${ }^{114}$, G. Zevi della Porta ${ }^{56}$, Z. Zhan ${ }^{32 \mathrm{~d}}$, D. Zhang ${ }^{32 \mathrm{~b}, a l}$, H. Zhang ${ }^{87}$, J. Zhang ${ }^{5}$, X. Zhang ${ }^{32 \mathrm{~d}}$, Z. Zhang ${ }^{114}$, L. Zhao ${ }^{107}$, T. Zhao ${ }^{137}$, Z. Zhao ${ }^{32 b}$, A. Zhemchugov ${ }^{63}$, J. Zhong ${ }^{117}$, B. Zhou ${ }^{86}$, N. Zhou ${ }^{162}$, Y. Zhou ${ }^{150}$, C.G. Zhu ${ }^{32 \mathrm{~d}}$, H. Zhu 41, J. Zhu ${ }^{86}$, Y. Zhu ${ }^{32 \mathrm{~b}}$, X. Zhuang ${ }^{97}$, V. Zhuravlov ${ }^{98}$, D. Zieminska ${ }^{59}$, N.I. Zimin ${ }^{63}$, R. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{47}$, M. Ziolkowski ${ }^{140}$, R. Zitoun ${ }^{4}$, L. Živković ${ }^{34}$, V.V. Zmouchko ${ }^{127, *}$, G. Zobernig ${ }^{172}$, A. Zoccoli ${ }^{19 a, 19 b}$, M. zur Nedden ${ }^{15}$, V. Zutshi ${ }^{105}$, L. Zwalinski ${ }^{29}$

[^3]18 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;
${ }^{(d)}$ Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; ${ }^{\text {(b) }}$ Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{21}$ Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
 del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{24}$ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ University Politehnica Bucharest, Bucharest; ${ }^{(c)}$ West University in Timisoara, Timisoara, Romania
${ }^{26}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{27}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
${ }^{29}$ CERN, Geneva, Switzerland
${ }^{30}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong, China
${ }^{33}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }_{35}^{34}$ Nevis Laboratory, Columbia University, Irvington, NY, United States
${ }^{35}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
${ }^{37}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
${ }^{38}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
${ }^{39}$ Physics Department, Southern Methodist University, Dallas, TX, United States
${ }^{40}$ Physics Department, University of Texas at Dallas, Richardson, TX, United States
${ }^{41}$ DESY, Hamburg and Zeuthen, Germany
${ }^{42}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{43}$ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
${ }^{44}$ Department of Physics, Duke University, Durham, NC, United States
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{47}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{48}$ Section de Physique, Université de Genève, Geneva, Switzerland
49 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{51}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
${ }_{56}^{55}$ Department of Physics, Hampton University, Hampton, VA, United States
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{58}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 Department of Physics, Indiana University, Bloomington, IN, United States
${ }^{60}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
61 University of Iowa, Iowa City, IA, United States
62 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
63 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{64}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
65 Graduate School of Science, Kobe University, Kobe, Japan
${ }^{66}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{67}$ Kyoto University of Education, Kyoto, Japan
${ }^{68}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{69}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{70}$ Physics Department, Lancaster University, Lancaster, United Kingdom
71 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{72}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{73}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{74}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{75}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{76}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{77}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{78}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{79}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{80}$ Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{83}$ Department of Physics, University of Massachusetts, Amherst, MA, United States
84 Department of Physics, McGill University, Montreal, QC, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
${ }^{86}$ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
87 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
88 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
89 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
${ }^{90}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
${ }^{91}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
92 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
${ }^{93}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
94 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{95}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{96}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
${ }^{97}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{99}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
101 (a) INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{104}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb, IL, United States
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York, NY, United States
108 Ohio State University, Columbus, OH, United States
109 Faculty of Science, Okayama University, Okayama, Japan
${ }^{110}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
111 Department of Physics, Oklahoma State University, Stillwater, OK, United States
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
114 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
${ }^{116}$ Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
123 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{125}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina, SK, Canada
${ }^{130}$ Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a) INFN Sezione di Roma I; ${ }^{(b)}$ Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V - Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
137 Department of Physics, University of Washington, Seattle, WA, United States
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
${ }^{140}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
142 SLAC National Accelerator Laboratory, Stanford, CA, United States
143 (a) Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a) Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(b)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a) Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{146}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics \mathcal{E} Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
${ }^{149}$ School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{151}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{152}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
156 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157 Department of Physics, University of Toronto, Toronto, ON, Canada
158 (a) TRIUMF, Vancouver, BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
159 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
160 Department of Physics and Astronomy, Tufts University, Medford, MA, United States
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
163 (a) INFN Gruppo Collegato di Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
164 Department of Physics, University of Illinois, Urbana, IL, United States
165 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica
de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

167 Department of Physics, University of British Columbia, Vancouver, BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
169 Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{170}$ Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison, WI, United States
${ }^{173}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{174}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{175}$ Department of Physics, Yale University, New Haven, CT, United States
${ }_{176}^{176}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{177}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
${ }^{b}$ Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
${ }^{c}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
${ }^{d}$ Also at TRIUMF, Vancouver, BC, Canada.
${ }^{e}$ Also at Department of Physics, California State University, Fresno, CA, United States.
${ }^{f}$ Also at Novosibirsk State University, Novosibirsk, Russia.
g Also at Fermilab, Batavia, IL, United States.
${ }^{h}$ Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
${ }^{i}$ Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
${ }^{j}$ Also at Università di Napoli Parthenope, Napoli, Italy.
${ }^{k}$ Also at Institute of Particle Physics (IPP), Canada.
${ }^{I}$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
${ }^{m}$ Also at Louisiana Tech University, Ruston, LA, United States.
${ }^{n}$ Also at Departamento de Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
${ }^{o}$ Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
${ }^{p}$ Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
${ }^{q}$ Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
${ }^{r}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{s}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
${ }^{t}$ Also at Manhattan College, New York, NY, United States.
${ }^{u}$ Also at School of Physics, Shandong University, Shandong, China.
${ }^{v}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
${ }^{w}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
${ }^{x}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{y}$ Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
${ }^{z}$ Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
${ }^{a a}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland.
${ }^{a b}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
${ }^{\text {ac }}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
${ }^{a d}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{\text {ae }}$ Also at California Institute of Technology, Pasadena, CA, United States.
${ }^{a f}$ Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
${ }^{a g}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
${ }^{a h}$ Also at Department of Physics, University of California, Berkeley, CA, United States, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
${ }^{\text {ai }}$ Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.
${ }^{a j}$ Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
${ }^{a k}$ Also at Department of Physics, Oxford University, Oxford, United Kingdom.
${ }^{\text {al }}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{a m}$ Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
${ }^{a n}$ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.

[^0]: कर © CERN for the benefit of the ATLAS Collaboration.

 * E-mail address: atlas.publications@cern.ch.

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the beam pipe axis. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$.

[^2]: ${ }^{2}$ High pile-up levels will introduce a pile-up dependence for the isolation variables used in the analysis and needs to be further investigated.

[^3]: ${ }^{1}$ Physics Department, SUNY Albany, Albany, NY, United States
 ${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
 $3^{(a)}$ Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Dumlupinar University, Kutahya; ${ }^{(c)}$ Department of Physics, Gazi University, Ankara; ${ }^{(d)}$ Division of Physics, TOBB University of Economics and Technology, Ankara; ${ }^{\left({ }^{(e)} \text { Turkish Atomic Energy Authority, Ankara, Turkey }\right.}$
 ${ }^{4}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
 ${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
 ${ }^{6}$ Department of Physics, University of Arizona, Tucson, AZ, United States
 ${ }^{7}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
 ${ }^{8}$ Physics Department, University of Athens, Athens, Greece
 ${ }^{9}$ Physics Department, National Technical University of Athens, Zografou, Greece
 ${ }^{10}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
 ${ }^{11}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain 12 (a) Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
 ${ }^{13}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
 ${ }^{14}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
 ${ }^{15}$ Department of Physics, Humboldt University, Berlin, Germany
 ${ }^{16}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
 ${ }^{17}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

