56 research outputs found

    Switchable ultrastrong coupling in circuit QED

    Get PDF
    Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to microwave resonators, the time has come to consider the generation and characterization of propagating quantum microwaves. In this paper, we design a key ingredient that will prove essential in the general frame: a swtichable coupling between qubit(s) and transmission line(s) that can work in the ultrastrong coupling regime, where the coupling strength approaches the qubit transition frequency. We propose several setups where two or more loops of Josephson junctions are directly connected to a closed (cavity) or open transmission line. We demonstrate that the circuit induces a coupling that can be modulated in strength and type. Given recent studies showing the accessibility to the ultrastrong regime, we expect our ideas to have an immediate impact in ongoing experiments

    Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity

    Get PDF
    Spontaneous parametric down-conversion (SPDC) has been a key enabling technology in exploring quantum phenomena and their applications for decades. For instance, traditional SPDC, which splits a high-energy pump photon into two lower-energy photons, is a common way to produce entangled photon pairs. Since the early realizations of SPDC, researchers have thought to generalize it to higher order, e.g., to produce entangled photon triplets. However, directly generating photon triplets through a single SPDC process has remained elusive. Here, using a flux-pumped superconducting parametric cavity, we demonstrate direct three-photon SPDC, with photon triplets generated in a single cavity mode or split between multiple modes. With strong pumping, the states can be quite bright, with flux densities exceeding 60 photons per second per hertz. The observed states are strongly non-Gaussian, which has important implications for potential applications. In the single-mode case, we observe a triangular star-shaped distribution of quadrature voltages, indicative of the long-predicted "star state." The observed state shows strong third-order correlations, as expected for a state generated by a cubic Hamiltonian. By pumping at the sum frequency of multiple modes, we observe strong three-body correlations between multiple modes, strikingly, in the absence of second-order correlations. We further analyze the third-order correlations under mode transformations by the symplectic symmetry group, showing that the observed transformation properties serve to "fingerprint" the specific cubic Hamiltonian that generates them. The observed non-Gaussian, third-order correlations represent an important step forward in quantum optics and may have a strong impact on quantum communication with microwave fields as well as continuous-variable quantum computation

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Startup Qilimanjaro—towards a European full-stack coherent quantum annealer platform

    Get PDF
    Qilimanjaro Quantum Tech is the full-stack quantum spin-off of three research institutions, the Barcelona Supercomputing Center (BSC), the Institute for High Energy Physics (IFAE) and the University of Barcelona (UB). The company addresses the emerging quantum readiness demand from industry and academia, by providing both algorithmic development services as well as access to a new coherent quantum annealer platform, a special purpose quantum computer. Qilimanjaro is a member of the AVaQus European Commission’s H2020 FET-Open consortium for coherent quantum annealing development, which is led by one of Qilimanjaro’s founders at IFAE. A special feature of Qilimanjaro are its funding sources being exclusively international client contracts.Qilimanjaro is fully funded by client contracts. In addition it is a member of the H2020—FET-Open AVaQus grant agreement no. 899561 (November 2020).Peer ReviewedPostprint (published version

    One qubit as a universal approximant

    Get PDF
    A single-qubit circuit can approximate any bounded complex function stored in the degrees of freedom defining its quantum gates. The single-qubit approximant presented in this work is operated through a series of gates that take as their parametrization the independent variable of the target function and an additional set of adjustable parameters. The independent variable is re-uploaded in every gate while the parameters are optimized for each target function. The output state of this quantum circuit becomes more accurate as the number of re-uploadings of the independent variable increases, i.e., as more layers of gates parameterized with the independent variable are applied. In this work, we provide two proofs of this claim related to both the Fourier series and the universal approximation theorem for neural networks, and we benchmark both methods against their classical counterparts. We further implement a single-qubit approximant in a real superconducting qubit device, demonstrating how the ability to describe a set of functions improves with the depth of the quantum circuit. This work shows the robustness of the re-uploading technique on quantum machine learning.We acknowledge financial support from Secretaria d’Universitatsi Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, co-funded by the European Union Regional Development Fund within the ERDF Operational Program of Catalunya (project QuantumCat, ref. 001-P-001644). A.G-S received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951911 (AI4Media). P. F.-D. acknowledges support from ”la Caixa” Foundation - Junior leader fellowship (ID100010434-CF/BQ/PR19/11700009), Ministry of Economy and Competitiveness and Agencia Estatal de Investigación (FIS2017-89860-P; SEV-2016-0588; PCI2019-111838-2), and European Commission (FET-Open AVaQus GA 899561; QuantERA). IFAE is partially funded by the CERCA program of the Generalitat de Catalunya.Peer ReviewedPostprint (author's final draft

    Broken selection rule in the quantum Rabi model

    No full text
    Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models.QN/Quantum Transpor

    On-demand microwave generator of shaped single photons

    No full text
    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.Peer Reviewe

    Crescimento urbano e poluição hídrica na zona norte de Londrina – PR

    Get PDF
    Estudou-se neste trabalho o crescimento urbano que se efetivou na área drenada pelos ribeirões Quatí e Lindóia, localizados na zona norte da cidade de Londrina, assim como verificou-se a poluição hídrica por efluentes residenciais e industriais nesses dois ribeirões. A questão da carência de saneamento básico nessa porção da cidade também foi tratada. Os dados obtidos permitiram um zoneamento hídrico-ambiental dos cursos hídricos envolvidos e a elaboração de algumas propostas objetivando minimizar os problemas levantados

    Excitons in a new light

    No full text

    <i>In vitro</i> effect of IFNs on IFITs expression in ZF4 cells and kidney primary cell cultures.

    No full text
    <p>A. Expression levels of IFIT genes in ZF4 cells after 4 and 24 hours of stimulation with supernatants from transfected HEK-293 cells with plasmids containing sequences for zf-IFNΦ1, zf-IFNΦ2 and zf-IFNΦ3. B. Kidney primary cell cultures after 4 and 24 hours of stimulation with supernatants from transfected HEK-293 cells with plasmids containing sequences for zf-IFNΦ1, zf-IFNΦ2 and zf-IFNΦ3. After 4 and 24 hours of stimulation, RNA was extracted and the cDNA was synthesized. Analysis of the gene expression was performed through real-time PCR, using 18 S ribosomal RNA as a housekeeping gene. The expression level of each gene was expressed as fold-change with respect to the empty plasmid group. The data are represented as the mean ± standard error of three independent samples. Significant differences among cells transfected with IFNΦ plasmids and empty plasmid were displayed as ***(0.0001</p
    corecore