289 research outputs found

    Learning to diagnose accurately through virtual patients: do reflection phases have an added benefit?

    Get PDF
    BACKGROUND Simulation-based learning with virtual patients is a highly effective method that could potentially be further enhanced by including reflection phases. The effectiveness of reflection phases for learning to diagnose has mainly been demonstrated for problem-centered instruction with text-based cases, not for simulation-based learning. To close this research gap, we conducted a study on learning history-taking using virtual patients. In this study, we examined the added benefit of including reflection phases on learning to diagnose accurately, the associations between knowledge and learning, and the diagnostic process. METHODS A sample of N = 121 medical students completed a three-group experiment with a control group and pre- and posttests. The pretest consisted of a conceptual and strategic knowledge test and virtual patients to be diagnosed. In the learning phase, two intervention groups worked with virtual patients and completed different types of reflection phases, while the control group learned with virtual patients but without reflection phases. The posttest again involved virtual patients. For all virtual patients, diagnostic accuracy was assessed as the primary outcome. Current hypotheses were tracked during reflection phases and in simulation-based learning to measure diagnostic process. RESULTS Regarding the added benefit of reflection phases, an ANCOVA controlling for pretest performance found no difference in diagnostic accuracy at posttest between the three conditions, F(2, 114) = 0.93, p = .398. Concerning knowledge and learning, both pretest conceptual knowledge and strategic knowledge were not associated with learning to diagnose accurately through reflection phases. Learners' diagnostic process improved during simulation-based learning and the reflection phases. CONCLUSIONS Reflection phases did not have an added benefit for learning to diagnose accurately in virtual patients. This finding indicates that reflection phases may not be as effective in simulation-based learning as in problem-centered instruction with text-based cases and can be explained with two contextual differences. First, information processing in simulation-based learning uses the verbal channel and the visual channel, while text-based learning only draws on the verbal channel. Second, in simulation-based learning, serial cue cases are used to gather information step-wise, whereas, in text-based learning, whole cases are used that present all data at once

    Authenticity and interest in virtual reality: Findings from an experiment including educational virtual environments created with 3D modeling and photogrammetry

    Get PDF
    Virtual Reality (VR) and photogrammetry are emerging technologies that facilitate and shape the ongoing digital transformation of education. VR offers new opportunities for creating immersive and interactive educational experiences. Photogrammetry enables new ways to create lifelike educational virtual environments and is becoming an alternative to manual 3D modeling with graphics software. The manner in which VR affects the authenticity of educational experiences has been addressed in previous educational and psychological research. Empirical papers have so far focused on the authenticity of educational VR environments created by 3D modeling. However, little is known about the authenticity of educational VR environments developed with photogrammetry. Given that VR provides rich multi-sensory experiences and interests can be stimulated by engaging contexts, educational VR environments also possess great potential to support interest development. What is still unknown regarding this topic are the beneficial characteristics of VR environments and the individual variables required to trigger and explain interest development. Consequently, we conducted an experiment following up on the mentioned authenticity and interest research questions in the context of higher education. A two-group between-subjects design was used and N = 64 educational science and psychology university students gathered information about a railroad bridge wearing a head-mounted display (HMD). The control group encountered an educational virtual environment created with 3D modeling. The intervention group was presented with the same educational virtual environment but the main object of the railroad bridge was generated by photogrammetry. Situational interest was measured in the pretest and the posttest; authenticity-related variables (i.e., presence and representation fidelity) were assessed in the posttest. Concerning authenticity, there were no significant group differences. Photogrammetry might thus not affect authenticity in educational contexts in which participants focus on gathering information. Regarding interest development, there were two main findings. First, interest in VR for learning increased from pretest to posttest, supporting that interest can be induced in VR. Second, a large share of posttest interest was explained by presence and pretest interest, highlighting the importance of these variables

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore