50 research outputs found

    Advanced virtual reality applications and intelligent agents for construction process optimisation and defect prevention

    Get PDF
    Defects and errors in new or recently completed construction work continually pervade the industry. Whilst inspection and monitoring processes are established vehicles for their 'control', the procedures involved are often process driven, time consuming, and resource intensive. Paradoxically therefore, they can impinge upon the broader aspects of project time, cost and quality outcomes. Acknowledging this means appreciating concatenation effects such as the potential for litigation, impact on other processes and influence on stakeholders' perceptions—that in turn, can impede progress and stifle opportunities for process optimisation or innovation. That is, opportunities relating to for example, logistics, carbon reduction, health and safety, efficiency, asset underutilisation and efficient labour distribution. This study evaluates these kinds of challenge from a time, cost and quality perspective, with a focus on identifying opportunities for process innovation and optimisation. It reviews—within the construction domain—state of the art technologies that support optimal use of artificial intelligence, cybernetics and complex adaptive systems. From this, conceptual framework is proposed for development of real-time intelligent observational platform supported by advanced intelligent agents, presented for discussion. This platform actively, autonomously and seamlessly manages intelligent agents (Virtual Reality cameras, Radio-Frequency Identification RFID scanners, remote sensors, etc.) in order to identify, report and document 'high risk' defects. Findings underpin a new ontological model that supports ongoing development of a dynamic, self-organised sensor (agent) network, for capturing and reporting real-time construction site data. The model is a 'stepping stone' for advancement of independent intelligent agents, embracing sensory and computational support, able to perform complicated (previously manual) tasks that provide optimal, dynamic, and autonomous management functions

    Lithological sequence, geochemistry and Sr, Nd and Pb isotopic data of Marshoun volcanic rocks, North Abhar (Tarom-Hashtjin subzone)

    Get PDF
    Marshoun area located 120Km Southeast of Zanjan, is a part of the Tarom-Hashtjin metallogenic-magmatic subzone within the Alborz-Azarbaijan zone. Similar to most parts of the Alborz-Azarbaijan zone, the Eocene-Oligocene volcanic and the intrusive rocks of this subzone were formed as a result of the Alpine orogenic phase, which has a close spatial and temporal relationship with metallic mineralization (Kouhestani et al., 2019). Several studies have been conducted on metallic mineralizations in different parts of the Tarom-Hashtjin subzone. The petrological studies carried out in this subzone are mainly focused on intrusive rocks (e.g., Seyed Qaraeini et al., 2020) and volcanic rocks' geochemical and petrological characteristics have been less considered. Marshoun area is composed of volcanic-sedimentary sequences which are hosts for Pb-Zn-Cu mineralization (Kouhestani et al., 2019). A detailed scientific study has not been done on the lithological sequence and their geochemical and petrological characteristics in the Marshoun area so far. In the present study, the lithological and geochemical characteristics including Sr, Nd, and Pb isotopic data, as well as the tectonomagmatic environment of the volcanic rocks of the area have been investigated.Materials and methodsDuring fieldwork, a 1:25000 geological map prepared from different lithological units of the area and over 30 samples were taken. Also, 17 thin sections for petrographical studies, 10 samples for chemical and 4 samples (2 andesites and 2 dacites) for iaoopic analyses. Chemical analyses (XRF and ICP–MS methods) were carried out at Zarazma Laboratory, Tehran, Iran., and isotopic studies (i.e. Nd, Sr, and Pb isotope studies at Institute of Geology and Geophysics, Chinese Academy of Geosciences, Beijing, China.ResultsThe predominant rock units in the Marshoun area are Eocene acidic tuffs, dacitic-rhyodacitic lava, and occasionally ignimbrite at the base and alternation of intermediate tuff with minor andesite and basaltic andesite intercalation in the top, along with some intrusive rocks with (Zajkan intrusion), and some gabbroic dykes.Zajkan intrusion including pyroxene quartz monzodiorite, quartz monzodiorite, and granodiorite composition intruded acidic volcano-sedimentary rocks with a total thickness of 930 meters can be divided into 9 parts.Volcanic rocks of the Marshoun area are classified as rhyolite, rhyodacite, dacite, andesite, basaltic andesite, and trachy-andesite with high-K calc-alkaline affinity. Dacitic-rhyodacitic rocks have porphyritic, flow, and spherolitic textures, composed of plagioclase, quartz, alkali feldspar, and mafic minerals (amphibole and biotite) set in a quartz-felspathic groundmass whereas, andesitic rocks show porphyritic, glomeroporphyritic, and amygdaloidal textures, composed of plagioclase and mafic minerals (amphibole and some pyroxene) set in a fine-grained and occasionally microlithic groundmass.All samples under study on primitive mantle normalized spider diagrams, have similar patterns indicative of their genetic relations. LILEs and HFSEs. negative anomalies are remarkable features of these rocks. Chondrite-normalized REE patterns demonstrate a relatively steep to low slope pattern with LREE enrichment and a high ratio of LREE/HREE, (La/Yb)N, and (La/Sm)N ratio between 3.8-30.1 and 1.2-8.25, respectively. On tectonomagmatic setting discrimination diagrams, volcanic rocks of the Marshoun area have been formed in an active continental margin tectonic setting. Isotopic data of Sr (0.70485-0.70622), Nd (0.512695-0.712733), and Pb (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb between 18.743-18.803, 15.5938-15.6112 and 38.8138-18.0721, respectively) point to dominant role of mantle in the formation of the investigated rocks. According to the Pb isotopes, the area's acidic rocks originated either from a more enriched mantle or were contaminated by crustal materials during ascending magma.Discussion and ConclusionAs the geochemical data indicate the primary magma of Marshoun volcanic rocks is generated by the partial melting of subcontinental metasomatized mantle lithosphere as a result of the subduction process within the continental margin environment. According to data obtained from the present study as well as the previous research, it can be concluded that the result of the subduction of the active continental margin and the shortening of the crust in Alborz during the Eocene gave rise to the thickening of continental crust and further led to the separation and subsidence of the lower part of the subcontinental lithospheric mantle (delamination).As a result of this event, the ascending of asthenosphere currents has led to an increase in the thermal gradient and partial melting of the subcontinental lithosphere and generation of basic magma which during ascending contaminated by crustal materials. Finally, the differentiation process led to the formation of intermediate and acidic rocks.AcknowledgmentThis research study was made possible by a grant from the office of the vice-chancellor of research and technology, University of Zanjan. We hereby acknowledge their generous support. The Journal of Petrology reviewers and editor are also thanked for their constructive comment

    Automated Planning of Concrete Joint Layouts with 4D-BIM

    Get PDF
    Concrete pouring represents a major critical path activity that is often affected by design limitations, structural considerations and on-site operational constraints. As such, meticulous planning is required to ensure that both the aesthetic and structural integrity of joints between cast in-situ components is achieved. Failure to adequately plan concrete pouring could lead to structural defects, construction rework or structural instability, all having major financial implications. Given the inherent complexity of large-scale construction projects, the ‘manual planning’ of concrete pouring is a challenging task and prone to human errors. Against this backdrop, this study developed 4D Building Information Management (BIM) approach to facilitate automated concrete joint positioning solution (as a proof of concept) for design professionals and contractors. The study first developed structural model in Revit, then extracted spatial information regarding all construction joints and linked them to dynamic Microsoft (MS) Excel and Matlab spreadsheets using integration facilitated by Dynamo software. Midspan points of each beam as well as floor perimeter information were gathered via codes developed in MS Excel macros. Based on the Excel outputs, Matlab programming was used to determine best concreating starting points and directions, and daily allowed concrete volume, considering limitations due to cold joints. These information were then pushed back to Revit via Dynamo in order to develop daily concrete scheduling. The developed automated programme framework offers a cost-effective and accurate methodology to address the limitations and inefficiencies of traditional methods of designing construction joints and planning pours. This framework extends the body of knowledge by introducing innovative solutions to integrate structural design considerations, constructional procedures and operational aspects for mitigating human error, and providing a novel, yet technically sound, basis for further application of BIM in structural engineering

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    External validation of the American prediction model for incident type 2 diabetes in the Iranian population

    No full text
    Abstract Background The primary aim of the present study was to validate the REasons for Geographic and Racial Differences in Stroke (REGARDS) model for incident Type 2 diabetes (T2DM) in Iran. Methods Present study was a prospective cohort study on 1835 population aged ≥ 45 years from Tehran lipids and glucose study (TLGS).The predictors of REGARDS model based on Bayesian hierarchical techniques included age, sex, race, body mass index, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and fasting plasma glucose. For external validation, the area under the curve (AUC), sensitivity, specificity, Youden’s index, and positive and negative predictive values (PPV and NPV) were assessed. Results During the 10-year follow-up 15.3% experienced T2DM. The model showed acceptable discrimination (AUC (95%CI): 0.79 (0.76–0.82)), and good calibration. Based on the highest Youden’s index the suggested cut-point for the REGARDS probability would be ≥ 13% which yielded a sensitivity of 77.2%, specificity 66.8%, NPV 94.2%, and PPV 29.6%. Conclusions Our findings do support that the REGARDS model is a valid tool for incident T2DM in the Iranian population. Moreover, the probability value higher than the 13% cut-off point is stated to be significant for identifying those with incident T2DM

    Live birth/parity number and the risk of incident hypertension among parous women during over 13 years of follow‐up

    No full text
    Abstract The effect of live birth/parity number on incident hypertension was investigated among Iranian parous women aged 30–70 years. The study population included 2188 normotensive women who were enrolled in 1999–2001. They were followed for incident hypertension (based on JNC 7 report) by 3‐year intervals up to April 2018. Multivariable Cox proportional hazard models, adjusted for a wide set of potential hypertension risk factors, reproductive factors, and pregnancy complications, were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of the number of parity/live birth(s) for incident hypertension. Additionally, as a sensitivity analysis, age‐scale Cox regression was also done. During a median follow‐up of 13.5 years, 935 incident hypertension have occurred. Compared to those with two live births, the participants who had 3 and ≥4 live births were at higher risk of hypertension development by the HRs of 1.25 [95% CI: 1.02–1.55] and 1.39 [1.12–1.72], respectively, in the full‐adjusted model. Moreover, each additional live birth increased the risk of hypertension by a HR of 1.06 [95%CI: 1.02–1.11]. Results of parity number were also similar. Considering age as time scale also did not change the results generally. The authors found a significant interaction between live birth/parity number and age groups; the adverse effect of higher live birth/parity numbers on hypertension development was mainly found among those aged < 50 years. To sum up, compared to the live birth/parity number of two, Iranian women with ≥3 live birth/parity had a higher risk of incident hypertension; the issue was more prominent among younger mothers

    Body mass index trajectories from adolescent to young adult for incident high blood pressure and high plasma glucose.

    No full text
    ObjectivesTo explore the association between sex-specific adiposity trajectories among Adolescents to early adulthood with incident high blood pressure (HBP) and high plasma glucose (HPG).MethodsWe studied body mass index (BMI) trajectories among1159 (male = 517) and 664 (male = 263) Iranian adolescents, aged 12-20 years, for incident HPG and HBP, respectively. Latent Class Growth Mixture Modeling (LCGMM) on longitudinal data was used to determine sex-specific and distinct BMI trajectories. Logistic regressions were applied to estimate the relationship between latent class membership with HBP and HPG, considering normal trajectory as the reference.ResultsFor both HBP and HPG, LCGMM determined two and three distinct BMI trajectories in males and females, respectively. During a follow-up of 12Years 104 (male = 62) and 111(male = 59) cases of HPG and HBP were found, respectively. Among females, faster BMI increases (i.e. overweight to early obese trajectory) but not overweight (i.e. those with BMI = 27.3 kg/m2 at baseline) trajectories increased the risk of HPG by adjusted odds ratios (ORs), 2.74 (1.10-5.80) and 0.79 (0.22-2.82), respectively; regarding HBP, the corresponding value for overweight to late obese trajectory was 3.72 (1.37-11.02). Among males, for HBP, the overweight trajectory increased the risk [2.09 (1.04-4.03)]; however, for incident HPG, none of the trajectories showed significant risk.ConclusionsAmong females, trend of increasing BMI parallel with age can be a better predictor for risk of developing HPG and HBP than those with higher BMI at baseline
    corecore