78 research outputs found

    Detailed SZ study of 19 LoCuSS galaxy clusters: masses and temperatures out to the virial radius

    Get PDF
    We present 16-GHz AMI SZ observations of 19 clusters with L_X >7x10^37 W (h50=1) selected from the LoCuS survey (0.142<z<0.295) and of A1758b, in the FoV of A1758a. We detect 17 clusters with 5-23sigma peak surface brightnesses. Cluster parameters are obtained using a Bayesian cluster analysis. We fit isothermal beta-models to our data and assume the clusters are virialized (with all the kinetic energy in gas internal energy). Our gas temperature, T_AMI, is derived from AMI SZ data, not from X-ray spectroscopy. Cluster parameters internal to r500 are derived assuming HSE. We find: (i) Different gNFW parameterizations yield significantly different parameter degeneracies. (ii) For h70 = 1, we find the virial radius r200 to be typically 1.6+/-0.1 Mpc and the total mass M_T(r200) typically to be 2.0-2.5xM_T(r500).(iii) Where we have found M_T X-ray (X) and weak-lensing (WL) values in the literature, there is good agreement between WL and AMI estimates (with M_{T,AMI}/M_{T,WL} =1.2^{+0.2}_{-0.3} and =1.0+/-0.1 for r500 and r200, respectively). In comparison, most Suzaku/Chandra estimates are higher than for AMI (with M_{T,X}/M_{T,AMI}=1.7+/-0.2 within r500), particularly for the stronger mergers.(iv) Comparison of T_AMI to T_X sheds light on high X-ray masses: even at large r, T_X can substantially exceed T_AMI in mergers. The use of these higher T_X values will give higher X-ray masses. We stress that large-r T_SZ and T_X data are scarce and must be increased. (v) Despite the paucity of data, there is an indication of a relation between merger activity and SZ ellipticity. (vi) At small radius (but away from any cooling flow) the SZ signal (and T_AMI) is less sensitive to ICM disturbance than the X-ray signal (and T_X) and, even at high r, mergers affect n^2-weighted X-ray data more than n-weighted SZ, implying significant shocking or clumping or both occur even in the outer parts of mergers.Comment: 45 pages, 33 figures, 13 tables Accepted for publication in MNRA

    Computational Analysis of Phosphopeptide Binding to the Polo-Box Domain of the Mitotic Kinase PLK1 Using Molecular Dynamics Simulation

    Get PDF
    The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors

    The Eruption of the Candidate Young Star ASASSN-15qi

    Get PDF
    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∌3.5\sim 3.5 mag brightening in the VV band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∌10,000\sim10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H2_2 is detected in emission from vibrational levels as high as v=11v=11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  Όb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this Ο range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the ttÂŻ → dilepton channel (lepton = e,ÎŒ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the ttÂŻ → dilepton and ttÂŻ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 ÎŒb −1 ÎŒb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Search for the Standard Model Higgs boson decaying into bb¯ produced in association with top quarks decaying hadronically in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for Higgs boson production in association with a pair of top quarks (ttÂŻ H) is performed, where the Higgs boson decays to bbÂŻ, and both top quarks decay hadronically. The data used correspond to an integrated luminosity of 20.3 fb−1 of pp collisions at √s = 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The search selects events with at least six energetic jets and uses a boosted decision tree algorithm to discriminate between signal and Standard Model background. The dominant multijet background is estimated using a dedicated data-driven technique. For a Higgs boson mass of 125 GeV, an upper limit of 6.4 (5.4) times the Standard Model cross section is observed (expected) at 95% confidence level. The best-fit value for the signal strength is ÎŒ = 1.6 ± 2.6 times the Standard Model expectation for mH = 125 GeV. Combining all ttÂŻ H searches carried out by ATLAS at √s = 8 and 7 TeV, an observed (expected) upper limit of 3.1 (1.4) times the Standard Model expectation is obtained at 95% confidence level, with a signal strength ÎŒ = 1.7 ± 0.8
    • 

    corecore