476 research outputs found
Susceptibility to corticosteroid-induced adrenal suppression: a genome-wide association study
\ua9 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: A serious adverse effect of corticosteroid therapy is adrenal suppression. Our aim was to identify genetic variants affecting susceptibility to corticosteroid-induced adrenal suppression. Methods: We enrolled children with asthma who used inhaled corticosteroids as part of their treatment from 25 sites across the UK (discovery cohort), as part of the Pharmacogenetics of Adrenal Suppression with Inhaled Steroids (PASS) study. We included two validation cohorts, one comprising children with asthma (PASS study) and the other consisting of adults with chronic obstructive pulmonary disorder (COPD) who were recruited from two UK centres for the Pharmacogenomics of Adrenal Suppression in COPD (PASIC) study. Participants underwent a low-dose short synacthen test. Adrenal suppression was defined as peak cortisol less than 350 nmol/L (in children) and less than 500 nmol/L (in adults). A case-control genome-wide association study was done with the control subset augmented by Wellcome Trust Case Control Consortium 2 (WTCCC2) participants. Single nucleotide polymorphisms (SNPs) that fulfilled criteria to be advanced to replication were tested by a random-effects inverse variance meta-analysis. This report presents the primary analysis. The PASS study is registered in the European Genome-phenome Archive (EGA). The PASS study is complete whereas the PASIC study is ongoing. Findings: Between November, 2008, and September, 2011, 499 children were enrolled to the discovery cohort. Between October, 2011, and December, 2012, 81 children were enrolled to the paediatric validation cohort, and from February, 2010, to June, 2015, 78 adults were enrolled to the adult validation cohort. Adrenal suppression was present in 35 (7%) children in the discovery cohort and six (7%) children and 17 (22%) adults in the validation cohorts. In the discovery cohort, 40 SNPs were found to be associated with adrenal suppression (genome-wide significance p<1
7 10−6), including an intronic SNP within the PDGFD gene locus (rs591118; odds ratio [OR] 7\ub732, 95% CI 3\ub715–16\ub799; p=5\ub78
7 10−8). This finding for rs591118 was validated successfully in both the paediatric asthma (OR 3\ub786, 95% CI 1\ub719–12\ub750; p=0\ub702) and adult COPD (2\ub741, 1\ub710–5\ub728; p=0\ub703) cohorts. The proportions of patients with adrenal suppression by rs591118 genotype were six (3%) of 214 patients with the GG genotype, 15 (6%) of 244 with the AG genotype, and 22 (25%) of 87 with the AA genotype. Meta-analysis of the paediatric cohorts (discovery and validation) and all three cohorts showed genome-wide significance of rs591118 (respectively, OR 5\ub789, 95% CI 2\ub797–11\ub768; p=4\ub73
7 10−9; and 4\ub705, 2\ub700–8\ub721; p=3\ub75
7 10−10). Interpretation: Our findings suggest that genetic variation in the PDGFD gene locus increases the risk of adrenal suppression in children and adults who use corticosteroids to treat asthma and COPD, respectively. Funding: Department of Health Chair in Pharmacogenetics
Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells
<p>Abstract</p> <p>Background</p> <p>The tick-borne intracellular pathogen, <it>Anaplasma phagocytophilum </it>(Rickettsiales: Anaplasmataceae) causes human granulocytic anaplasmosis after infection of polymorphonuclear leucocytes. The human Sp110 gene is a member of the nuclear body (NB) components that functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that Sp110 may be involved in the infection of human promyelocytic HL-60 cells with <it>A. phagocytophilum</it>.</p> <p>Methods</p> <p>The human Sp110 and <it>A. phagocytophilum msp4 </it>mRNA levels were evaluated by real-time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-infection. The effect of Sp110 expression on <it>A. phagocytophilum </it>infection was determined by RNA interference (RNAi). The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg, MD, USA). The <it>A. phagocytophilum </it>infection levels were evaluated in HL-60 cells after RNAi by real-time PCR of <it>msp4 </it>and normalizing against human <it>Alu </it>sequences.</p> <p>Results</p> <p>While Sp110 mRNA levels increased concurrently with <it>A. phagocytophilum </it>infections in HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection levels.</p> <p>Conclusion</p> <p>These results demonstrated that Sp110 expression is required for <it>A. phagocytophilum </it>infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by which <it>A. phagocytophilum </it>modulates Sp110 mRNA levels to facilitate establishment of infection of human HL-60 cells.</p
Dynamical Mean-Field Theory
The dynamical mean-field theory (DMFT) is a widely applicable approximation
scheme for the investigation of correlated quantum many-particle systems on a
lattice, e.g., electrons in solids and cold atoms in optical lattices. In
particular, the combination of the DMFT with conventional methods for the
calculation of electronic band structures has led to a powerful numerical
approach which allows one to explore the properties of correlated materials. In
this introductory article we discuss the foundations of the DMFT, derive the
underlying self-consistency equations, and present several applications which
have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems",
edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure
The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study
BACKGROUND: High fruit and vegetable intake is known to reduce the risk of colon cancer. To improve understanding of this phenomenon the action of different phytochemicals on colon cells has been examined. One such compound is quercetin that belongs to the group known as flavonoids. The purpose of this study was to determine the influence of quercetin on the proteome of the SW480 human colon adenocarcinoma cell line, specifically to identify proteins that could be the molecular targets of quercetin in its amelioration of the progression of colon cancer. To this end, two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins that underwent a change in expression following treatment of the cells with 20 μM quercetin. This could elucidate how quercetin may reduce the progression of colon cancer. RESULTS: Quercetin treatment of the SW480 human colon cancer cells was found to result in the decreased expression of three proteins and the increased expression of one protein. The identified proteins with decreased expression were type II cytoskeletal 8 keratin and NADH dehydrogenase Fe-S protein 3. The other protein with decreased expression was not identified. The protein with increased expression belonged to the annexin family. CONCLUSION: Several proteins were determined to have altered expression following treatment with quercetin. Such changes in the levels of these particular proteins could underlie the chemo-protective action of quercetin towards colon cancer
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Domain wall fermions for planar physics
In 2+1 dimensions, Dirac fermions in reducible, i.e. four-component representations of the spinor algebra form the basis of many interesting model field theories and effective descriptions of condensed matter phenomena. This paper explores lattice formulations which preserve the global U(2N) symmetry present in the massless limit, and its breakdown to U(N)xU(N) implemented by three independent and parity-invariant fermion mass terms. I set out generalisations of the Ginsparg-Wilson relation, leading to a formulation of an overlap operator, and explore the remnants of the global symmetries which depart from the continuum form by terms of order of the lattice spacing. I also define a domain wall formulation in 2+1+1d, and present numerical evidence, in the form of bilinear condensate and meson correlator calculations in quenched non-compact QED using reformulations of all three mass terms, to show that U(2N) symmetry is recovered in the limit that the domain-wall separation L tends to infinity. The possibility that overlap and domain wall formulations of reducible fermions may coincide only in the continuum limit is discussed
How “Humane” Is Your Endpoint?—Refining the Science-Driven Approach for Termination of Animal Studies of Chronic Infection
Public concern on issues such as animal welfare or the scientific validity and clinical value of animal research is growing, resulting in increasing regulatory demands for animal research. Abiding to the most stringent animal welfare standards, while having scientific objectives as the main priority, is often challenging. To do so, endpoints of studies involving severe, progressive diseases need to be established considering how early in the disease process the scientific objectives can be achieved. We present here experimental studies of tuberculosis (TB) in mice as a case study for an analysis of present practice and a discussion of how more refined science-based endpoints can be developed. A considerable proportion of studies in this field involve lethal stages, and the establishment of earlier, reliable indicators of disease severity will have a significant impact on animal welfare. While there is an increasing interest from scientists and industry in moving research in this direction, this is still far from being reflected in actual practice. We argue that a major limiting factor is the absence of data on biomarkers that can be used as indicators of disease severity. We discuss the possibility of complementing the widely used weight loss with other relevant biomarkers and the need for validation of these parameters as endpoints. Promotion of ethical guidelines needs to be coupled with systematic research in order to develop humane endpoints beyond the present euthanasia of moribund animals. Such research, as we propose here for chronic infection, can show the way for the development and promotion of welfare policies in other fields of research.
Research on chronic infection relies heavily on the use of animals, as only the integral animal body can model the full aspect of an infection. That animals are generally made to develop a disease in infection studies exacerbates the tension between human benefit and animal well-being, which characterizes all biomedical research with animals. Scientists typically justify animal research with reference to potential human benefits, but if accepting the assumption that human benefits can offset animal suffering, it still needs to be argued that the same benefits could not be achieved with less negative effects on animal welfare. Reducing the animal welfare problems associated with research (“refinement” [1]) is therefore crucial in order to render animal-based research less of an ethical problem and to assure public trust in research.
Studies that are designed to measure time of death or survival percentages present a particularly challenging situation in which at least some of the animals are made to die from the disease. These studies are frequent in experimental research on severe infections. The scientific community, industry, and regulatory authorities have responded to the ethical concerns over studies in which animals die from severe disease by developing new policies and guidelines for the implementation of humane endpoints as a key refinement measure (e.g., [2]–[4]). The most widely used definition considers a humane endpoint to be the earliest indicator in an animal experiment of severe pain, severe distress, suffering, or impending death [5], underlining that ideally such indicators should be identified before the onset of the most severe effects.
Euthanizing animals, rather than awaiting their “spontaneous” death, is important to avoid unnecessary suffering in studies in which data on survival is thought to be required for scientific or legal reasons. However, several questions remain open regarding how humane endpoints are to be applied to address real animal welfare problems. We used TB experiments in mice as a case study to highlight the potential to establish biomarkers of disease progress that can replace survival time as a measure of disease severity.Fundação para a Ciência e Tecnologia (SFRH/BD/38337/2007)
An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease 3. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393 transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment. A subset of latent TB patients had signatures similar to those in active TB patients. We also identified a specific 86-transcript signature that discriminated active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis, suggest that this TB signature reflects both changes in cellular composition and altered gene expression. Although an IFN signature was also observed in whole blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic
- …