2,049 research outputs found

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Magnetic Phase Diagram of GdNi2B2C: Two-ion Magnetoelasticity and Anisotropic Exchange Couplings

    Full text link
    Extensive magnetization and magnetostriction measurements were carried out on a single crystal of GdNi2B2C along the main tetragonal axes. Within the paramagnetic phase, the magnetic and strain susceptibilities revealed a weak anisotropy in the exchange couplings and two-ion tetragonal-preserving alpha-strain modes. Within the ordered phase, magnetization and magnetostriction revealed a relatively strong orthorhombic distortion mode and rich field-temperature phase diagrams. For H//(100) phase diagram, three field-induced transformations were observed, namely, at: Hd(T), related to the domain alignment; Hr(T), associated with reorientation of the moment towards the c-axis; and Hs(T), defining the saturation process wherein the exchange field is completely counterbalanced. On the other hand, For H//(001) phase diagram, only two field-induced transformations were observed, namely at: Hr(T) and Hs(T). For both phase diagrams, Hs(T) follows the relation Hs[1-(T/Tn)^2]^(1/2)kOe with Hs(T-->0)=128.5(5) kOe and Tn(H=0)=19.5 K. In contrast, the thermal evolution of Hr(T) along the c-axis (much simpler than along the a-axis) follows the relation Hr[1-T/Tr]^(1/3) kOe where Hr(T-->0)=33.5(5) kOe and Tr(H=0)=13.5 K. It is emphasized that the magnetoelastic interaction and the anisotropic exchange coupling are important perturbations and therefore should be explicitly considered if a complete analysis of the magnetic properties of the borocarbides is desired

    Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time

    Full text link
    We present a model for structure formation, melting, and optical properties of gold/DNA nanocomposites. These composites consist of a collection of gold nanoparticles (of radius 50 nm or less) which are bound together by links made up of DNA strands. In our structural model, the nanocomposite forms from a series of Monte Carlo steps, each involving reaction-limited cluster-cluster aggregation (RLCA) followed by dehybridization of the DNA links. These links form with a probability peffp_{eff} which depends on temperature and particle radius aa. The final structure depends on the number of monomers (i. e. gold nanoparticles) NmN_m, TT, and the relaxation time. At low temperature, the model results in an RLCA cluster. But after a long enough relaxation time, the nanocomposite reduces to a compact, non-fractal cluster. We calculate the optical properties of the resulting aggregates using the Discrete Dipole Approximation. Despite the restructuring, the melting transition (as seen in the extinction coefficient at wavelength 520 nm) remains sharp, and the melting temperature TMT_M increases with increasing aa as found in our previous percolation model. However, restructuring increases the corresponding link fraction at melting to a value well above the percolation threshold. Our calculated extinction cross section agrees qualitatively with experiments on gold/DNA composites. It also shows a characteristic ``rebound effect,'' resulting from incomplete relaxation, which has also been seen in some experiments. We discuss briefly how our results relate to a possible sol-gel transition in these aggregates.Comment: 12 pages, 10 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+J/ψK+B^+ \to J/\psi \, K^+ and B0J/ψK0B^0 \to J/\psi \, K^{*0} using 3.0fb13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7TeV7\mathrm{\,TeV} and 8TeV8\mathrm{\,TeV}. Its tagging power on these samples of BJ/ψXB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Evidence for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞbfΛb0B(ΞbΛb0π)=(5.7±1.80.9+0.8)×104{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞbf_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the bΞbb\to\Xi_b^- and bΛb0b\to\Lambda_b^0 fragmentation fractions, and B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
    corecore