A new O(N) algorithm based on a recursion method, in which the computational
effort is proportional to the number of atoms N, is presented for calculating
the inverse of an overlap matrix which is needed in electronic structure
calculations with the the non-orthogonal localized basis set. This efficient
inverting method can be incorporated in several O(N) methods for
diagonalization of a generalized secular equation. By studying convergence
properties of the 1-norm of an error matrix for diamond and fcc Al, this method
is compared to three other O(N) methods (the divide method, Taylor expansion
method, and Hotelling's method) with regard to computational accuracy and
efficiency within the density functional theory. The test calculations show
that the new method is about one-hundred times faster than the divide method in
computational time to achieve the same convergence for both diamond and fcc Al,
while the Taylor expansion method and Hotelling's method suffer from numerical
instabilities in most cases.Comment: 17 pages and 4 figure