720 research outputs found

    War and the Fiscal Capacity of the State

    Get PDF
    __Abstract__ We examine the role of war in retarding state fiscal capacity in developing countries, measured by tax revenue ratios to GDP. This in contrast to the European experience from the Renaissance to the 20th century, where it is believed that war and state-building were inseparable, enhancing the fiscal capacity of the state; in turn enlarging the scope and magnitude of government expenditure. We build a simple theoretical model of a factionalized state, where patronage substitutes for common interest public goods, along with the possibility of violent contestation over a rent or prize, typically in the form of natural resource revenues. Our dynamic panel empirical analysis on the determinants of fiscal capacity is applied to 79 developing countries, during 1980-2010. Results indicate that war, especially in its current dominant form of civil war, retards fiscal capacity, along with imperfect democracy, political repression, the quality of governance, dependence on oil and macroeconomic mismanagement. High intensity conflict is particularly destructive of state capacity. Countries experiencing low intensity wars, other institutional factors may matter more for fiscal capacity formation compared to war. The diminution of state capacity due to war appears less pronounced after the end of the cold war

    Integrable open spin chains from giant gravitons

    Full text link
    We prove that in the presence of a maximal giant graviton state in N=4 SYM, the states dual to open strings attached to the giant graviton give rise to an PSU(2,2|4) open spin chain model with integrable boundary conditions in the SO(6) sector of the spin chain to one loop order.Comment: 18 pages, 2 figures, uses JHEP

    A study of open strings ending on giant gravitons, spin chains and integrability

    Full text link
    We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N=4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS_5x S^5, so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction.Comment: 38 pages+appendices, 9 figures. Uses JHEP3. v2: added reference

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    The S-matrix of the Faddeev-Reshetikhin Model, Diagonalizability and PT Symmetry

    Full text link
    We study the question of diagonalizability of the Hamiltonian for the Faddeev-Reshetikhin (FR) model in the two particle sector. Although the two particle S-matrix element for the FR model, which may be relevant for the quantization of strings on AdS5×S5AdS_{5}\times S^{5}, has been calculated recently using field theoretic methods, we find that the Hamiltonian for the system in this sector is not diagonalizable. We trace the difficulty to the fact that the interaction term in the Hamiltonian violating Lorentz invariance leads to discontinuity conditions (matching conditions) that cannot be satisfied. We determine the most general quartic interaction Hamiltonian that can be diagonalized. This includes the bosonic Thirring model as well as the bosonic chiral Gross-Neveu model which we find share the same S-matrix. We explain this by showing, through a Fierz transformation, that these two models are in fact equivalent. In addition, we find a general quartic interaction Hamiltonian, violating Lorentz invariance, that can be diagonalized with the same two particle S-matrix element as calculated by Klose and Zarembo for the FR model. This family of generalized interaction Hamiltonians is not Hermitian, but is PTPT symmetric. We show that the wave functions for this system are also PTPT symmetric. Thus, the theory is in a PTPT unbroken phase which guarantees the reality of the energy spectrum as well as the unitarity of the S-matrix.Comment: 32 pages, 1 figure; references added, version published in JHE

    Black Holes in Higher-Dimensional Gravity

    Full text link
    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22, 200

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore