6 research outputs found

    Conformationally Constrained Functional Peptide Monolayers for the Controlled Display of Bioactive Carbohydrate Ligands

    No full text
    In this study, we employed thiolated peptides of the conformationally constrained, strongly helicogenic α-aminoisobutyric acid (Aib) residue to prepare self-assembled monolayers (SAMs) on gold surfaces. Electrochemistry and infrared reflection absorption spectroscopy support the formation of very well packed Aib-peptide SAMs. The immobilized peptides retain their helical structure, and the resulting SAMs are stabilized by a network of intermolecular H bonds involving the NH groups adjacent to the Au surface. Binary SAMs containing a synthetically defined glycosylated mannose-functionalized Aib-peptide as the second component display similar features, thereby providing reproducible substrates suitable for the controlled display of bioactive carbohydrate ligands. The efficiency of such Aib-based SAMs as a biomolecular recognition platform was evidenced by examining the mannose–concanavalin A interaction via surface plasmon resonance biosensing

    Conformationally Constrained Functional Peptide Monolayers for the Controlled Display of Bioactive Carbohydrate Ligands

    No full text
    In this study, we employed thiolated peptides of the conformationally constrained, strongly helicogenic \u3b1-aminoisobutyric acid (Aib) residue to prepare self-assembled monolayers (SAMs) on gold surfaces. Electrochemistry and infrared reflection absorption spectroscopy support the formation of very well packed Aib-peptide SAMs. The immobilized peptides retain their helical structure, and the resulting SAMs are stabilized by a network of intermolecular H bonds involving the NH groups adjacent to the Au surface. Binary SAMs containing a synthetically defined glycosylated mannose-functionalized Aib-peptide as the second component display similar features, thereby providing reproducible substrates suitable for the controlled display of bioactive carbohydrate ligands. The efficiency of such Aib-based SAMs as a biomolecular recognition platform was evidenced by examining the mannose-concanavalin A interaction via surface plasmon resonance biosensing

    The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017

    No full text
    corecore