722 research outputs found

    Dust in Brown Dwarfs IV. Dust formation and driven turbulence on mesoscopic scales

    Get PDF
    Dust formation in brown dwarf atmospheres is studied by utilising a model for driven turbulence in the mesoscopic scale regime. We apply a pseudo-spectral method where waves are created and superimposed within a limited wavenumber interval. The turbulent kinetic energy distribution follows the Kolmogoroff spectrum which is assumed to be the most likely value. Such superimposed, stochastic waves may occur in a convectively active environment. They cause nucleation fronts and nucleation events and thereby initiate the dust formation process which continues until all condensible material is consumed. Small disturbances are found to have a large impact on the dust forming system. An initially dust-hostile region, which may originally be optically thin, becomes optically thick in a patchy way showing considerable variations in the dust properties during the formation process. The dust appears in lanes and curls as a result of the interaction with waves, i.e. turbulence, which form larger and larger structures with time. Aiming on a physical understanding of the variability of brown dwarfs, related to structure formation in substellar atmospheres, we work out first necessary criteria for small-scale closure models to be applied in macroscopic simulations of dust forming astrophysical systems.Comment: A&A accepted, 20 page

    Cluster algebras in algebraic Lie theory

    Full text link
    We survey some recent constructions of cluster algebra structures on coordinate rings of unipotent subgroups and unipotent cells of Kac-Moody groups. We also review a quantized version of these results.Comment: Invited survey; to appear in Transformation Group

    Spectroscopy across the brown dwarf/planetary mass boundary - I. Near-infrared JHK spectra

    Full text link
    With a uniform VLT SINFONI data set of nine targets, we have developed an empirical grid of J,H,K spectra of the atmospheres of objects estimated to have very low substellar masses of \sim5-20 MJup and young ages of \sim1-50 Myr. Most of the targets are companions, objects which are especially valuable for comparison with atmosphere and evolutionary models, as they present rare cases in which the age is accurately known from the primary. Based on the sample youth, all objects are expected to have low surface gravity, and this study investigates the critical early phases of the evolution of substellar objects. The spectra are compared with grids of five different theoretical atmosphere models. This analysis represents the first systematic model comparison with infrared spectra of young brown dwarfs. The fits to the full JHK spectra of each object result in a range of best fit effective temperatures of +/-150-300K whether or not the full model grid or a subset restricted to lower log(g) values is used. This effective temperature range is significantly larger than the uncertainty typically assigned when using a single model grid. Fits to a single wavelength band can vary by up to 1000K using the different models. Since the overall shape of these spectra is governed more by the temperature than surface gravity, unconstrained model fits did not find matches with low surface gravity or a trend in log(g) with age. This suggests that empirical comparison with spectra of unambiguously young objects targets (such as these SINFONI data) may be the most reliable method to search for indications of low surface gravity and youth. For two targets, the SINFONI data are a second epoch and the data show no variations in morphology over time. The analysis of two other targets, AB Pic B and CT Cha B, suggests that these objects may have lower temperatures, and consequently lower masses, than previously estimated.Comment: 15 pages, 13 figure

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    Direct evidence of a sub-stellar companion around CT Cha

    Full text link
    In our ongoing search for close and faint companions around T Tauri stars, we found a very faint (Ks=14.9mag, Ks_0=14.4mag) object, just ~2.67" northwest of the Chamaeleon star-forming region member CT Cha corresponding to a projected separation of ~440AU at 165+/-30 pc. We show that CT Cha A and this faint object form a common proper motion pair from data of the VLT Adaptive Optics (AO) instrument NACO taken in February 2006 and March 2007 and that the companion is by >=4 sigma significance not a stationary background object. Our AO integral field spectroscopy with SINFONI in J, and H+K bands yields a temperature of 2600+/-250K for the companion and an optical extinction of A_V=5.2+/-0.8mag, when compared to spectra calculated from Drift-Phoenix model atmospheres. We demonstrate the validity of the model fits by comparison to several other well-known young sub-stellar objects. Relative flux calibration of the bands was achieved using photometry from the NACO imaging data. We conclude that the CT Cha companion is a very low-mass member of Chamaeleon and very likely a physical companion to CT Cha, as the probability for a by chance alignment is <=0.01. Due to a prominent Pa-Beta emission in the J-band, accretion is probably still ongoing onto the CT Cha companion. From temperature and luminosity (log(Lbol/Lsun)= -2.68+/-0.21), we derive a radius of R=2.20+0.81-0.60 R_Jup. We find a consistent mass of M=17+/-6 MJup for the CT Cha companion from both its luminosity and temperature when placed on evolutionary tracks. Hence, the CT Cha companion is most likely a wide brown dwarf companion or possibly even a planetary mass object.Comment: 10 pages, 11 figures, accepted for publication in A&

    Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2

    Get PDF
    Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0 electroproduction reactions have been performed at the Mainz Microtron MAMI in the A1 spectrometer facility using for the first time the Kaos spectrometer for kaon detection. These processes were studied in a kinematical region not covered by any previous experiment. The nucleon was probed in its third resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055 (GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from photoproduction to electroproduction cross sections. Comparison with predictions of effective Lagrangian models based on the isobar approach reveal that strong longitudinal couplings of the virtual photon to the N* resonances can be excluded from these models.Comment: 16 pages, 7 figure

    The T Tauri star RY Tau as a case study of the inner regions of circumstellar dust disks

    Full text link
    We study the inner region of the circumstellar disk around the TTauri star RY Tau. Our aim is to find a physical description satisfying the available interferometric data, obtained with the mid-infrared interferometric instrument at the Very Large Telescope Interferometer, as well as the spectral energy distribution. We also compare the findings with the results of similar studies, including those of intermediate-mass stars. Our analysis is done within the framework of a passive circumstellar disk, which is optionally supplemented by the effects of accretion and an added envelope. To achieve a more consistent and realistic model, we used our continuum transfer code MC3D. In addition, we studied the shape of the 10um silicate emission feature in terms of the underlying dust population, both for single-dish and for interferometric measurements. We show that a modestly flaring disk model with accretion can explain both the observed spectral energy distribution and the mid-infrared visibilities obtained with the mid-infrared infrared instrument. We found an interesting ambiguity: a circumstellar active disk model with an added envelope, and a lower accretion rate than in the active disk model without envelope, could represent the observations equally as well. This type of model with the envelope should be considered a viable alternative in future models of other TTauri stars. The approach of a disk with a puffed-up inner rim wall and the influence of a stellar companion is also discussed. From the study of the silicate emission feature we see evidence for dust evolution in a TTauri star, with a decreasing fraction of small amorphous and an increasing fraction of crystalline particles closer to the star.Comment: 19 pages, 23 figures; accepted by Astronomy & Astrophysic

    Residential electricity pricing in China

    Get PDF
    The paper aims to evaluate the implications of the new residential pricing system in China by examining price and income elasticity of demand by different household types. We use pre-reform annual panel data for 29 provinces over a fourteen year period, from 1998 to 2011, applying feasible generalize least squares models. The price and income elasticities for household sector are -0.412, and 1.476 at nation level, -0.300 and 1.550 in urban areas and -0.522 and 1.093 in rural areas respectively. With regional effects, the price and income elasticities are -0.146 and 1.286 for urban households in coastal provinces and -0.772 and 1.259 for urban households in inland provinces respectively. The empirical results reveal that there is important heterogeneity in the responsiveness to electricity price changes according to household income level and location
    • …
    corecore