809 research outputs found

    Heating and cooling processes in disks

    Get PDF
    The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement no 284405. 10th Lecture from Summer School “Protoplanetary Disks: Theory and Modelling Meet Observations”This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed.Publisher PDFPeer reviewe

    Detectability of dirty dust grains in brown dwarf atmospheres

    Get PDF
    Dust clouds influence the atmospheric structure of brown dwarfs, and they affect the heat transfer and change the gas-phase chemistry. However, the physics of their formation and evolution is not well understood. In this letter, we predict dust signatures and propose a potential observational test of the physics of dust formation in brown dwarf atmosphere based on the spectral features of the different solid components predicted by dust formation theory. A momentum method for the formation of dirty dust grains (nucleation, growth, evaporation, drift) is used in application to a static brown dwarf atmosphere structure to compute the dust grain properties, in particular the heterogeneous grain composition and the grain size. Effective medium and Mie theory are used to compute the extinction of these spherical grains. Dust formation results in grains whose composition differs from that of grains formed at equilibrium. Our kinetic model predicts that solid amorphous SiO2[s] (silica) is one of the most abundant solid component followed by amorphous MgSiO4[s] and MgSiO3[s], while SiO2[s] is absent in equilibrium models because it is a metastable solid. Solid amorphous SiO2[s] possesses a strong broad absorption feature centered at 8.7mum, while amorphous Mg2SiO4[s]/MgSiO3[s] absorb at 9.7mum beside other absorption features at longer wavelength. Those features at lambda < 15mum are detectable in absorption if grains are small (radius < 0.2mum) in the upper atmosphere as suggested by our model. We suggest that the detection of a feature at 8.7mum in deep infrared spectra could provide evidence for non-equilibrium dust formation that yields grains composed of metastable solids in brown dwarf atmospheres. This feature will shift towards 10mum and broaden if silicates (e.g. fosterite) are much more abundant.Comment: A&A Letter, accepte

    Prospects of using simulations to study the photospheres of brown dwarfs

    Full text link
    We discuss prospects of using multi-dimensional time-dependent simulations to study the atmospheres of brown dwarfs and extrasolar giant planets, including the processes of convection, radiation, dust formation, and rotation. We argue that reasonably realistic simulations are feasible, however, separated into two classes of local and global models. Numerical challenges are related to potentially large dynamic ranges, and the treatment of scattering of radiation in multi-D geometries.Comment: 6 pages, 3 figures, to appear in the Proceedings of the IAU Symposium 239 "Convection in Astrophysics", eds. F. Kupka, I.W. Roxburgh, and K.L. Cha

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    Too little radiation pressure on dust in the winds of oxygen-rich AGB stars

    Get PDF
    New dynamical models for dust-driven winds of oxygen-rich AGB stars are presented which include frequency-dependent Monte Carlo radiative transfer by means of a sparse opacity distribution technique and a time-dependent treatment of the nucleation, growth and evaporation of inhomogeneous dust grains composed of a mixture of Mg2SiO4, SiO2, Al2O3, TiO2, and solid Fe. The frequency-dependent treatment of radiative transfer reveals that the gas is cold close to the star (700-900 K at 1.5-2 R*) which facilitates the nucleation process. The dust temperatures are strongly material-dependent, with differences as large as 1000 K for different pure materials, which has an important influence on the dust formation sequence. Two dust layers are formed in the dynamical models: almost pure glassy Al2O3 close to the star (r > 1.5 R*) and the more opaque Fe-poor Mg-Fe-silicates further out. Solid Fe or Fe-rich silicates are found to be the only condensates that can efficiently absorb the stellar light in the near IR. Consequently, they play a crucial role for the wind driving mechanism and act as thermostat. Only small amounts of Fe can be incorporated into the grains, because otherwise the grains get too hot. Thus, the models reveal almost no mass loss, and no dust shells.Comment: 4 pages, 3 figures. accepted as A&A letter after minor revision

    FUV and X-ray irradiated protoplanetary disks: a grid of models I. The disk structure

    Get PDF
    Context. Planets are thought to eventually form from the mostly gaseous (~99% of the mass) disks around young stars. The density structure and chemical composition of protoplanetary disks are affected by the incident radiation field at optical, FUV, and X-ray wavelengths, as well as by the dust properties. Aims. The effect of FUV and X-rays on the disk structure and the gas chemical composition are investigated. This work forms the basis of a second paper, which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+ observed with facilities such as Spitzer and Herschel. Methods. A grid of 240 models is computed in which the X-ray and FUV luminosity, minimum grain size, dust size distribution, and surface density distribution are varied in a systematic way. The hydrostatic structure and the thermo-chemical structure are calculated using ProDiMo. Results. The abundance structure of neutral oxygen is stable to changes in the X-ray and FUV luminosity, and the emission lines will thus be useful tracers of the disk mass and temperature. The C+ abundance distribution is sensitive to both X-rays and FUV. The radial column density profile shows two peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and other heavy elements have a very strong response to X-rays, and the column density in the inner disk increases by two orders of magnitude from the lowest (LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV confines the Ne+ ionized region to areas closer to the star at low X-ray luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to higher temperatures in the inner disk and higher ionization fractions in the outer disk. The line fluxes and profiles are affected by the effects on these species, thus providing diagnostic value in the study of FUV and X-ray irradiated disks around T Tauri stars. (abridged)Comment: 47 pages, accepted by Astronomy and Astrophysics, a high resolution version of the paper is located at http://www.astro.rug.nl/~meijerink/disk_paperI_xrays.pd

    Dust cloud formation in stellar environments. II. Two-dimensional models for structure formation around AGB stars

    Get PDF
    This paper reports on computational evidence for the formation of cloud-like dust structures around C-rich AGB stars. This spatio-temporal structure formation process is caused by a radiative/thermal instability of dust forming gases as identified by Woitke et al.(2000). Our 2D (axisymmetric) models combine a time-dependent description of the dust formation process according to Gail & Sedlmayr (1988) with detailed, frequency-dependent continuum radiative transfer by means of a Monte Carlo method (Niccolini et al.2003) in an otherwise static medium (v=0). These models show that the formation of dust behind already condensed regions, which shield the stellar radiation field, is strongly favoured. In the shadow of these clouds, the temperature decreases by several hundred Kelvin which triggers the subsequent formation of dust and ensures its thermal stability. Considering an initially dust-free gas with small density inhomogeneities, we find that finger-like dust structures develop which are cooler than the surroundings and point towards the centre of the radiant emission, similar to the cometary knots observed in planetary nebulae and star formation regions. Compared to a spherical symmetric reference model, the clumpy dust distribution has little effect on the spectral energy distribution, but dominates the optical appearance in near IR monochromatic images.Comment: 16 pages, 8 figures, submitted to A&

    A hybrid steady-state magnetohydrodynamic dust-driven stellar wind model for AGB stars

    Full text link
    We present calculations for a magnetised hybrid wind model for Asymptotic Giant Branch (AGB) stars. The model incorporates a canonical Weber-Davis (WD) stellar wind with dust grains in the envelope of an AGB star. The resulting hybrid picture preserves traits of both types of winds. It is seen that this combination requires that the dust-parameter (Γd\Gamma_{d}) be less than unity in order to achieve an outflow. The emergence of critical points in the wind changes the nature of the dust-driven outflow, simultaneously, the presence of a dust condensation radius changes the morphology of the magnetohydrodynamic (MHD) solutions for the wind. In this context, we additionally investigate the effect of having magnetic-cold spots on the equator of an AGB star and its implications for dust formation; which are seen to be consistent with previous findings.Comment: 15 pages, 9 figure

    Tracing the Physical Conditions in Active Galactic Nuclei with Time-Dependent Chemistry

    Full text link
    We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+ and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+ and H3O+; HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in AGN. The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 10^4 years. Through ALMA observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the SMBH accretion rate. Strong evolutionary trends, on time scales of 10^4-10^8 years, are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.Comment: Accepted for publication at the Journal of Physical Chemistry A "Oka Festschrift: Celebrating 45 Years of Astrochemistry

    The effects of dust evolution on disks in the mid-IR

    Get PDF
    In this paper, we couple together the dust evolution code two-pop-py with the thermochemical disk modelling code ProDiMo. We create a series of thermochemical disk models that simulate the evolution of dust over time from 0.018 Myr to 10 Myr, including the radial drift, growth, and settling of dust grains. We examine the effects of this dust evolution on the mid-infrared gas emission, focussing on the mid-infrared spectral lines of C2H2, CO2, HCN, NH3, OH, and H2O that are readily observable with Spitzer and the upcoming E-ELT and JWST. The addition of dust evolution acts to increase line fluxes by reducing the population of small dust grains. We find that the spectral lines of all species except C2H2 respond strongly to dust evolution, with line fluxes increasing by more than an order of magnitude across the model series as the density of small dust grains decreases over time. The C2H2 line fluxes are extremely low due to a lack of abundance in the infrared line-emitting regions, despite C2H2 being commonly detected with Spitzer, suggesting that warm chemistry in the inner disk may need further investigation. Finally, we find that the CO2 flux densities increase more rapidly than the other species as the dust disk evolves. This suggests that the flux ratios of CO2 to other species may be lower in disks with less-evolved dust populations.Comment: 13 pages, 9 figures, accepted in A&
    corecore