614 research outputs found

    The Gemini NICI Planet-Finding Campaign: Discovery of a Close Substellar Companion to the Young Debris Disk Star PZ Tel

    Full text link
    We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the Beta Pictoris moving group observed with high contrast adaptive optics imaging as part of the Gemini NICI Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.33 +/- 0.01") in April 2009. Second-epoch observations in May 2010 demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities > 0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7+/-2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12 +8 -4 Myr for the system, we estimate a mass of 36 +/- 6 Mjup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 um emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.Comment: 15 pages, 4 figures, to appear in ApJ Letter

    A Spectroscopic Binary at the M/L Transition

    Full text link
    We report the discovery of a single-lined spectroscopic binary with an Ultra Cool Dwarf (UCD) primary with a spectral type between M8 and L0.5. This system was discovered during the course of an ongoing survey to monitor L dwarfs for radial velocity variations and is the first known small separation (a<1 AU) spectroscopic binary among dwarfs at the M/L transition. Based on radial-velocity measurements with a typical precision of 300 m/s we estimate the orbital parameters of this system to be P=246.73+/-0.49 d, a1 sin(i)=0.159+/-0.003 AU, M2 sin(i)=0.2062 (M1+M2)^(2/3)+/-0.0034 M_{\sun}. Assuming a primary mass of M1=0.08M_{\sun} (based on spectral type), we estimate the secondary minimum mass to be M2 sin(i)=0.054 M_{\sun}. With future photometric, spectroscopic, and interferometric observations it may be possible to determine the dynamical masses of both components directly, making this system one of the best characterized UCD binaries known.Comment: 11 pages, 2 figures. Accepted for publication in ApJ Letter

    A Search for Planets Transiting the M Dwarf Debris Disk Host, AU Microscopii

    Get PDF
    We present high cadence, high precision multi-band photometry of the young, M1Ve, debris disk star, AU Microscopii. The data were obtained in three continuum filters spanning a wavelength range from 4500\AA to 6600\AA, plus Hα\alpha, over 28 nights in 2005. The lightcurves show intrinsic stellar variability due to starspots with an amplitude in the blue band of 0.051 magnitudes and a period of 4.847 days. In addition, three large flares were detected in the data which all occur near the minimum brightness of the star. We remove the intrinsic stellar variability and combine the lightcurves of all the filters in order to search for transits by possible planetary companions orbiting in the plane of the nearly edge-on debris disk. The combined final lightcurve has a sampling of 0.35 minutes and a standard deviation of 6.8 millimags (mmag). We performed Monte Carlo simulations by adding fake transits to the observed lightcurve and find with 95% significance that there are no Jupiter mass planets orbiting in the plane of the debris disk on circular orbits with periods, P 5\le 5 days. In addition, there are no young Neptune-like planets (with radii 2.5×\times smaller than the young Jupiter) on circular orbits with periods, P 3\le 3 days.Comment: accepted to MNRA

    Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey

    Full text link
    We present near-infrared observations of 71 newly discovered L and T dwarfs, selected from imaging data of the Sloan Digital Sky Survey (SDSS) using the i-dropout technique. Sixty-five of these dwarfs have been classified spectroscopically according to the near-infrared L dwarf classification scheme of Geballe et al. and the unified T dwarf classification scheme of Burgasser et al. The spectral types of these dwarfs range from L3 to T7, and include the latest types yet found in the SDSS. Six of the newly identified dwarfs are classified as early- to mid-L dwarfs according to their photometric near-infrared colors, and two others are classified photometrically as M dwarfs. We also present new near-infrared spectra for five previously published SDSS L and T dwarfs, and one L dwarf and one T dwarf discovered by Burgasser et al. from the Two Micron All Sky Survey. The new SDSS sample includes 27 T dwarfs and 30 dwarfs with spectral types spanning the complex L-T transition (L7-T3). We continue to see a large (~0.5 mag) spread in J-H for L3 to T1 types, and a similar spread in H-K for all dwarfs later than L3. This color dispersion is probably due to a range of grain sedimentation properties, metallicity, and gravity. We also find L and T dwarfs with unusual colors and spectral properties that may eventually help to disentangle these effects.Comment: accepted by AJ, 18 pages, 10 figures, 5 tables, emulateapj layou

    Companions of Stars: From Other Stars to Brown Dwarfs to Planets: The Discovery of the First Methane Brown Dwarf

    Full text link
    The discovery of the first methane brown dwarf provides a framework for describing the important advances in both fundamental physics and astrophysics that are due to the study of companions of stars. I present a few highlights of the history of this subject along with details of the discovery of the brown dwarf Gliese 229B. The nature of companions of stars is discussed with an attempt to avoid biases induced by anthropocentric nomenclature. With the newer types of remote reconnaissance of nearby stars and their systems of companions, an exciting and perhaps even more profound set of contributions to science is within reach in the near future. This includes an exploration of the diversity of planets in the universe and perhaps soon the first solid evidence for biological activity outside our Solar System.Comment: 31 pages, 13 figure

    A Resolved Millimeter Emission Belt in the AU Mic Debris Disk

    Full text link
    We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter

    Sub-Pixel Response Measurement of Near-Infrared Sensors

    Get PDF
    Wide-field survey instruments are used to efficiently observe large regions of the sky. To achieve the necessary field of view, and to provide a higher signal-to-noise ratio for faint sources, many modern instruments are undersampled. However, precision photometry with undersampled imagers requires a detailed understanding of the sensitivity variations on a scale much smaller than a pixel. To address this, a near-infrared spot projection system has been developed to precisely characterize near-infrared focal plane arrays and to study the effect of sub-pixel non uniformity on precision photometry. Measurements of large format near-infrared detectors demonstrate the power of this system for understanding sub-pixel response.Comment: 9 pages, 13 figures, submitted to PAS
    corecore