2,459 research outputs found

    A 3D radiative transfer framework: IV. spherical & cylindrical coordinate systems

    Full text link
    We extend our framework for 3D radiative transfer calculations with a non-local operator splitting methods along (full) characteristics to spherical and cylindrical coordinate systems. These coordinate systems are better suited to a number of physical problems than Cartesian coordinates. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate Λ\Lambda operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter for the different coordinate systems. The results are directly compared to 1D plane parallel tests. The 3D results agree very well with the well-tested 1D calculations.Comment: A&A, in pres

    Modeling CHANDRA Low Energy Transmission Grating Spectrometer Observations of Classical Novae with PHOENIX. I. V4743 Sagittarii

    Full text link
    We use the PHOENIX code package to model the X-ray spectrum of Nova V4743 Sagittarii observed with the LETGS onboard the Chandra satellite on March 2003. Our atmosphere models are 1D spherical, expanding, line blanketed, and in full NLTE. To analyze nova atmospheres and related systems with an underlying nuclear burning envelope at X-ray wavelengths, it was necessary to update the code with new microphysics, as discussed in this paper. We demonstrate that the X-ray emission is dominated by thermal bremsstrahlung and that the hard X-rays are dominated by Fe and N absorption. The best fit to the observation is provided at a temperature of T_eff = 5.8 x 10^5 K, with L_bol = 50 000 L_sun. The models are calculated for solar abundances. It is shown that the models can be used to determine abundances in the nova ejecta.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Does Foam Rolling Really Work?

    Get PDF
    Delayed onset muscle soreness (DOMS) is the sensation of pain and stiffness that is felt up to four days after an intense bout of exercise. You may have felt this sensation a few days after going on a long hike or back in high school during preseason for a sport. DOMS is present due to small tears in the muscle resulting from unaccustomed exercise, which increases inflammation and decreases maximal strength produced in that muscle. With more pain and less strength than usual, daily activities, such as walking down stairs, and athletic performance, such as strength to kick a soccer ball, may be compromised. One way potentially to alleviate DOMS is foam rolling. Previous research suggests that foam rolling loosens and warms up muscles to decrease inflammation and restore strength to an individual after intense exercise. With funding from a Summer Undergraduate Research Fellowship (SURF) in summer 2016, I recruited twenty-one college-aged participants to determine whether foam rolling works as an aid in decreasing DOMS. I did not find any significant differences in the alleviation of DOMS between participants who used foam rolling and those who did not use foam rolling, but I did find that my protocol to induce DOMS successfully induced significant increases in soreness and decreases in strength in all participants

    Expanding atmosphere models for SSS spectra of novae

    Full text link
    Super Soft Source (SSS) spectra are powered by nuclear burning on the surface of a white dwarf. The released energy causes a radiatively-driven wind that leads to a radially extended atmosphere around the white dwarf. Significant blue shifts in photospheric absorption lines are found in the spectra of novae during their SSS phase, being an evidence of continued mass loss in this phase. We present spherically symmetric PHOENIX models that account for the expansion of the ejecta. A comparison to a plane parallel, hydrostatic atmosphere model demonstrates that the mass loss can have a significant impact on the model spectra. The dynamic model yields less pronounced absorption edges, and harder X-ray spectra are the result. Therefore, lower effective temperatures are needed to explain the observed spectra. Although both types of models are yet to be fine-tuned in order to accurately determine best fit parameters, the implications on the chemical abundances are going in opposite directions. With the expanding models the requirement for strong depletion of the crucial elements that cause these edges is now avoidable.Comment: 4 pages, accepted for A

    A 3D radiative transfer framework: VII. Arbitrary velocity fields in the Eulerian frame

    Full text link
    A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well- tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible

    Non-LTE Treatment of Fe II in Astrophysical Plasmas

    Get PDF
    We describe our implementation of an extremely detailed model atom of singly ionized iron for NLTE computations in static and moving astrophysical plasmas. Our model atom includes 617 levels, 13675 primary permitted transitions and up to 1.2 million secondary transitions. Our approach guarantees that the total iron opacity is included at the correct wavelength with reasonable memory and CPU requirements. We find that the lines saturate the wavelength space, such that special wavelength points inserted along the detailed profile functions may be replaced with a statistical sampling method. We describe the results of various test calculations for novae and supernovae.Comment: 17 pages, latex, aip style, no figures included, full text with figures available at ftp://brian.la.asu.edu/pub/preprint/FeII-NLTE.ps.Z or at http://brian.la.asu.edu

    Time-dependent radiative transfer with PHOENIX

    Full text link
    Aims. We present first results and tests of a time-dependent extension to the general purpose model atmosphere code PHOENIX. We aim to produce light curves and spectra of hydro models for all types of supernovae. Methods. We extend our model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative transfer in a special relativistic framework. A simple hydrodynamics solver was implemented to keep track of the energy conservation of the atmosphere during free expansion. Results. The correct operation of the new additions to PHOENIX were verified in test calculations. Conclusions. We have shown the correct operation of our extension to time-dependent radiative transfer and will be able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure

    A 3D radiative transfer framework: V. Homologous Flows

    Full text link
    Observations and theoretical calculations have shown the importance of non-spherically symmetric structures in supernovae. Thus, the interpretation of observed supernova spectra requires the ability to solve the transfer equation in 3-D moving atmospheres. We present an implementation of the solution of the radiative transfer equation in 3-D homologously expanding atmospheres in spherical coordinates. The implementation is exact to all orders in v/c. We use a new affine method that makes use of the fact that photons travel on straight lines. We compare our results in 3-D for spherically symmetric test problems with high velocity fields and find excellent agreement. Our well-tested 1-D results are based on methods where the momentum directions vary along the characteristic (co-moving momentum directions). Thus, we are able to verify both the analytic framework and its numerical implementation. Additionally, we have been able to test the parallelization over characteristics. Using 512^2 momentum angles we ran the code on 16,384 Opteron processors and achieved excellent scaling. It is now possible to calculate synthetic spectra from realistic 3D hydro simulations. This should open an era of progress in hydro modeling, similar to that that occurred in the 1980s when 1-D models were confronted with synthetic spectra.Comment: 6 pages, 3 figures, Astronomy & Astrophysics, in pres

    Precipitable Water in Cloudy Area

    Get PDF

    General Relativistic Radiative Transfer

    Get PDF
    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres
    • …
    corecore