64 research outputs found

    Effect of geometry modifications on the engulfment in micromixers: Numerical simulations and stability analysis

    Get PDF
    The effect of geometry variations on the engulfment regime in micromixers is investigated. The engulfment regime is a steady flow regime resulting from a symmetry-breaking pitchfork bifurcation as the Reynolds number (based on the hydraulic diameter and bulk velocity of the outlet conduit) is increased above a critical value. This flow regime is particularly interesting because it leads to an increase of mixing in micromixers. Here, starting from a T-mixer, the inclination α of the inlet channels is systematically varied, considering both arrow-like (α<0) and Y-mixers (α>0), α=0° denoting a T-mixer. It is shown by direct numerical simulations (DNS) that the engulfment regime is present in all the considered geometries and it starts at progressively lower values of the Reynolds number as α is decreased. The main differences in the flow topology are limited and mainly confined at the confluence region between the two incoming flows. The instability leading to the engulfment regime is further investigated by linear stability analysis. This allows a more accurate prediction of the critical Reynolds number for the onset of engulfment as α is varied and, through an adjoint-based sensitivity analysis, the localization of the corresponding instability core

    Stability analysis and control of the flow in a symmetric channel with a sudden expansion

    Get PDF
    The laminar flow in two-dimensional diffusers may produce either symmetric or nonsymmetric steady solutions, depending on the value of the Reynolds number as compared with some critical value. The stability properties of the flow are studied in the context of linear theory. In this context, a sensitivity analysis of the flow instability is carried out with respect to perturbations that may be produced by a realistic passive control, thus providing qualitative hints and quantitative information for the control design. Following the so-obtained information, a passive control is built by introducing a small cylinder in the flow with the aim of stabilizing the unstable symmetric flow configuration in the diffuser. The effectiveness of this control is finally assessed by direct numerical simulation. It is shown that the introduction of the cylinder, placed following the indications of the linear sensitivity analysis in the stable asymmetric flow configuration, allows a steady completely symmetric or less asymmetric flow to be recovered. The flow transient between the uncontrolled asymmetric solution and the symmetric controlled one is analyzed in terms of streamlines and vorticity evolution; the effects of the cylinder introduction on flow dissipation are also assessed. © 2012 American Institute of Physics

    Surveillance of Influenza and Other Airborne Transmission Viruses during the 2021/2022 Season in Hospitalized Subjects in Tuscany, Italy

    Get PDF
    Winter in the northern hemisphere is characterized by the circulation of influenza viruses, which cause seasonal epidemics, generally from October to April. Each influenza season has its own pattern, which differs from one year to the next in terms of the first influenza case notification, the period of highest incidence, and the predominant influenza virus subtypes. After the total absence of influenza viruses in the 2020/2021 season, cases of influenza were again recorded in the 2021/2022 season, although they remained below the seasonal average. Moreover, the co-circulation of the influenza virus and the SARS-CoV-2 pandemic virus was also reported. In the context of the DRIVE study, oropharyngeal swabs were collected from 129 Tuscan adults hospitalized for severe acute respiratory infection (SARI) and analyzed by means of real-time polymerase chain reaction (RT-PCR) for SARS-CoV-2 and 21 different airborne pathogens, including influenza viruses. In total, 55 subjects tested positive for COVID-19, 9 tested positive for influenza, and 3 tested positive for both SARS-CoV-2 and the A/H3N2 influenza virus. The co-circulation of different viruses in the population requires strengthened surveillance that is no longer restricted to the winter months. Indeed, constant, year-long monitoring of the trends of these viruses is needed, especially in at-risk groups and elderly people

    A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease

    Get PDF
    Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for H

    A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease

    Get PDF
    Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for HD

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √S=7 and 8 TeV in the ATLAS experiment

    Get PDF
    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H -> gamma gamma, ZZ*, WW*, Z gamma, b (b) over bar, tau tau and mu mu decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb(-1) at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18(-0.14)(+0.15). The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore