1,356 research outputs found

    Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation.

    Get PDF
    OBJECTIVE: Cystic fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, continues to present diagnostic challenges. Newborn screening and an evolving understanding of CF genetics have prompted a reconsideration of the diagnosis criteria. STUDY DESIGN: To improve diagnosis and achieve standardized definitions worldwide, the CF Foundation convened a committee of 32 experts in CF diagnosis from 9 countries to develop clear and actionable consensus guidelines on the diagnosis of CF and to clarify diagnostic criteria and terminology for other disorders associated with CFTR mutations. An a priori threshold of ≥80% affirmative votes was required for acceptance of each recommendation statement. RESULTS: After reviewing relevant literature, the committee convened to review evidence and cases. Following the conference, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 27 of 28 statements, 7 of which needed revisions and a second round of voting. CONCLUSIONS: It is recommended that diagnoses associated with CFTR mutations in all individuals, from newborn to adult, be established by evaluation of CFTR function with a sweat chloride test. The latest mutation classifications annotated in the Clinical and Functional Translation of CFTR project (http://www.cftr2.org/index.php) should be used to aid in diagnosis. Newborns with a high immunoreactive trypsinogen level and inconclusive CFTR functional and genetic testing may be designated CFTR-related metabolic syndrome or CF screen positive, inconclusive diagnosis; these terms are now merged and equivalent, and CFTR-related metabolic syndrome/CF screen positive, inconclusive diagnosis may be used. International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes for use in diagnoses associated with CFTR mutations are included

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Pathogenic marine microbes influence the effects of climate change on a commercially important tropical bivalve

    Get PDF
    There is growing evidence that climate change will increase the prevalence of toxic algae and harmful bacteria, which can accumulate in marine bivalves. However, we know little about any possible interactions between exposure to these microorganisms and the effects of climate change on bivalve health, or about how this may affect the bivalve toxin-pathogen load. In mesocosm experiments, mussels, Perna viridis, were subjected to simulated climate change (warming and/or hyposalinity) and exposed to harmful bacteria and/or toxin-producing dinoflagellates. We found significant interactions between climate change and these microbes on metabolic and/or immunobiological function and toxin-pathogen load in mussels. Surprisingly, however, these effects were virtually eliminated when mussels were exposed to both harmful microorganisms simultaneously. This study is the first to examine the effects of climate change on determining mussel toxin-pathogen load in an ecologically relevant, multi-trophic context. The results may have considerable implications for seafood safety

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Internet Gaming Disorder Behaviors in emergent adulthood: a pilot study examining the interplay between anxiety and family cohesion

    Get PDF
    Understanding risk and protective factors associated with Internet Gaming Disorder (IGD) has been highlighted as a research priority by the American Psychiatric Association, (2013). The present study focused on the potential IGD risk effect of anxiety and the buffering role of family cohesion on this association. A sample of emerging adults all of whom were massively multiplayer online (MMO) gamers (18–29 years) residing in Australia were assessed longitudinally (face-to-face: N = 61, Mage = 23.02 years, SD = 3.43) and cross-sectionally (online: N = 64, Mage = 23.34 years, SD = 3.39). IGD symptoms were assessed using the nine-item Internet Gaming Disorder Scale-Short Form (IGDS-SF9; Pontes & Griffiths Computers in Human Behavior, 45, 137–143. https://doi.org/10.1016/j.chb.2014.12.006, 2015). The Beck Anxiety Inventory (BAI; Beck and Steer, 1990) and the balanced family cohesion scale (BFC; Olson Journal of Marital & Family Therapy, 3(1) 64–80. https://doi.org/10.1111/j.1752-0606.2009.00175.x, 2011) were applied to assess anxiety and BFC levels, respectively. Linear regressions and moderation analyses confirmed that anxiety increased IGD risk and that BFC weakened the anxiety-related IGD risk

    Adaptive Evolution of Escherichia coli to an α-Peptide/β-Peptoid Peptidomimetic Induces Stable Resistance.

    Get PDF
    Antimicrobial peptides (AMPs) and synthetic analogues thereof target conserved structures of bacterial cell envelopes and hence, development of resistance has been considered an unlikely event. However, recently bacterial resistance to AMPs has been observed, and the aim of the present study was to determine whether bacterial resistance may also evolve against synthetic AMP analogues, e.g. α-peptide/β-peptoid peptidomimetics. E. coli ATCC 25922 was exposed to increasing concentrations of a peptidomimetic (10 lineages), polymyxin B (10 lineages), or MilliQ water (4 lineages) in a re-inoculation culturing setup covering approx. 500 generations. All 10 lineages exposed to the peptidomimetic adapted to 32 × MIC while this occurred for 8 out of 10 of the polymyxin B-exposed lineages. All lineages exposed to 32 × MIC of either the peptidomimetic or polymyxin B had a significantly increased MIC (16-32 ×) to the selection agent. Five transfers (≈ 35 generations) in unsupplemented media did not abolish resistance indicating that resistance was heritable. Single isolates from peptidomimetic-exposed lineage populations displayed MICs against the peptidomimetic from wild-type MIC to 32 × MIC revealing heterogeneous populations. Resistant isolates showed no cross-resistance against a panel of membrane-active AMPs. These isolates were highly susceptible to blood plasma antibacterial activity and were killed when plasma concentrations exceeded ≈ 30%. Notably, MIC of the peptidomimetic against resistant isolates returned to wild-type level upon addition of 25% plasma. Whole-genome sequencing of twenty isolates from four resistant lineages revealed mutations, in murein transglycosylase D (mltD) and outer-membrane proteins, which were conserved within and between lineages. However, no common resistance-conferring mutation was identified. We hypothesise that alterations in cell envelope structure result in peptidomimetic resistance, and that this may occur via several distinct mechanisms. Interestingly, this type of resistance result in a concomitant high susceptibility towards plasma, and therefore the present study does not infer additional concern for peptidomimetics as future therapeutics
    corecore