379 research outputs found
Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids
The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals
Multifrequency Strategies for the Identification of Gamma-Ray Sources
More than half the sources in the Third EGRET (3EG) catalog have no firmly
established counterparts at other wavelengths and are unidentified. Some of
these unidentified sources have remained a mystery since the first surveys of
the gamma-ray sky with the COS-B satellite. The unidentified sources generally
have large error circles, and finding counterparts has often been a challenging
job. A multiwavelength approach, using X-ray, optical, and radio data, is often
needed to understand the nature of these sources. This chapter reviews the
technique of identification of EGRET sources using multiwavelength studies of
the gamma-ray fields.Comment: 35 pages, 22 figures. Chapter prepared for the book "Cosmic Gamma-ray
Sources", edited by K.S. Cheng and G.E. Romero, to be published by Kluwer
Academic Press, 2004. For complete article and higher resolution figures, go
to: http://www.astro.columbia.edu/~muk/mukherjee_multiwave.pd
Palaeoclimate inferred from δ18O and palaeobotanical indicators in freshwater tufa of Lake Äntu Sinijärv, Estonia
We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δ18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δ18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δ18O (less than −12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δ18O values, to −11.3 and −11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from −11.5 to −10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δ18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δ18O, reaching the most negative value (−12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP
Staphylococcus aureus infection dynamics
Staphylococcus aureus is a human commensal that can also cause systemic infections. This transition requires evasion of the immune response and the ability to exploit different niches within the host. However, the disease mechanisms and the dominant immune mediators against infection are poorly understood. Previously it has been shown that the infecting S. aureus population goes through a population bottleneck, from which very few bacteria escape to establish the abscesses that are characteristic of many infections. Here we examine the host factors underlying the population bottleneck and subsequent clonal expansion in S. aureus infection models, to identify underpinning principles of infection. The bottleneck is a common feature between models and is independent of S. aureus strain. Interestingly, the high doses of S. aureus required for the widely used "survival" model results in a reduced population bottleneck, suggesting that host defences have been simply overloaded. This brings into question the applicability of the survival model. Depletion of immune mediators revealed key breakpoints and the dynamics of systemic infection. Loss of macrophages, including the liver Kupffer cells, led to increased sensitivity to infection as expected but also loss of the population bottleneck and the spread to other organs still occurred. Conversely, neutrophil depletion led to greater susceptibility to disease but with a concomitant maintenance of the bottleneck and lack of systemic spread. We also used a novel microscopy approach to examine abscess architecture and distribution within organs. From these observations we developed a conceptual model for S. aureus disease from initial infection to mature abscess. This work highlights the need to understand the complexities of the infectious process to be able to assign functions for host and bacterial components, and why S. aureus disease requires a seemingly high infectious dose and how interventions such as a vaccine may be more rationally developed
Recommended from our members
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition
of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term ‘prebiotic’ by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
The role of herbivores in shaping subtropical coral communities in warming oceans
Tropicalization is rapidly restructuring subtropical marine communities. A key driver for tropicalization is changes in herbivory pressure that are linked with degrading ecosystem stability. Consequently, subtropical algal beds are being displaced by climate-mediated colonisation of coral communities. This process is thought to be aided by the elevated herbivory resulting from tropicalization, but the relative contribution to herbivory by different taxa is not fully understood. Evaluating herbivory pressure and its effect on coral cover and rugosity across a subtropical latitudinal gradient will help predict how these processes may change with further tropicalization and ocean warming. Herbivory pressure exerted by fishes and urchins across this subtropical latitudinal gradient remains unquantified. Using in-situ feeding observations, we quantify fish and urchin herbivory pressure at seven sites across non-accreting coral communities, and warmer accreting coral reefs in southern Japan. We then relate herbivory pressure to respective fish and urchin community structure and coral cover and rugosity. Urchin herbivory is greater on non-accreting coral communities than on true coral accreting reefs; a result which is reversed for fish herbivory. Overall, herbivory pressure is greater on accreting coral reefs than on coral non-accreting communities, but is dependent on reef characteristics as community structures differ more strongly among reefs than between regions. These factors are linked to coral cover and rugosity that differ between reefs, but not between climatic regions, further emphasising the influence of local factors on the benthic cover and the associated fish and urchin community, and thus herbivory pressure. Our findings provide a foundation for understanding how non-accreting coral communities may respond to ongoing tropicalization, given the fish and invertebrate herbivores they host
- …
