184 research outputs found

    RESOPS: A Database for Analyzing the Correspondence of RNA Editing Sites to Protein Three-Dimensional Structures

    Get PDF
    Transcripts from mitochondrial and chloroplast DNA of land plants often undergo cytidine to uridine conversion-type RNA editing events. RESOPS is a newly built database that specializes in displaying RNA editing sites of land plant organelles on protein three-dimensional (3D) structures to help elucidate the mechanisms of RNA editing for gene expression regulation. RESOPS contains the following information: unedited and edited cDNA sequences with notes for the target nucleotides of RNA editing, conceptual translation from the edited cDNA sequence in pseudo-UniProt format, a list of proteins under the influence of RNA editing, multiple amino acid sequence alignments of edited proteins, the location of amino acid residues coded by codons under the influence of RNA editing in protein 3D structures and the statistics of biased distributions of the edited residues with respect to protein structures. Most of the data processing procedures are automated; hence, it is easy to keep abreast of updated genome and protein 3D structural data. In the RESOPS database, we clarified that the locations of residues switched by RNA editing are significantly biased to protein structural cores. The integration of different types of data in the database also help advance the understanding of RNA editing mechanisms. RESOPS is accessible at http://cib.cf.ocha.ac.jp/RNAEDITING/

    PPR proteins - orchestrators of organelle RNA metabolism.

    Get PDF
    Pentatricopeptide repeat (PPR) proteins are important RNA regulators in chloroplasts and mitochondria, aiding in RNA editing, maturation, stabilisation or intron splicing, and in transcription and translation of organellar genes. In this review, we summarise all PPR proteins documented so far in plants and the green alga Chlamydomonas. By further analysis of the known target RNAs from Arabidopsis thaliana PPR proteins, we find that all organellar-encoded complexes are regulated by these proteins, although to differing extents. In particular, the orthologous complexes of NADH dehydrogenase (Complex I) in the mitochondria and NADH dehydrogenase-like (NDH) complex in the chloroplast were the most regulated, with respectively 60 and 28% of all characterised A. thaliana PPR proteins targeting their genes

    A framework for the identification of hotspots of climate change risk for mammals

    Get PDF
    As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here we present a framework for assessing three components of climate-related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g., weaning age) and extrinsic factors (e.g., precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data-sufficient terrestrial non-volant mammals (3953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range) we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south-western Kenya, north-eastern Tanzania, north-eastern South Africa, Yunnan province in China, and mountain chains in Papua-New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity

    Estimates of linkage disequilibrium and effective population size in rainbow trout

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of molecular genetic technologies for broodstock management and selective breeding of aquaculture species is becoming increasingly more common with the continued development of genome tools and reagents. Several laboratories have produced genetic maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These maps have resulted in the identification of many quantitative/qualitative trait loci affecting phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance, sex determination, embryonic development rate, spawning date, condition factor and growth. Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic diversity has yet to be achieved in this species having low marker densities and lacking a whole genome reference sequence. Experimental designs which integrate segregation analyses with linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits. To date the extent of LD has been characterized for humans and several agriculturally important livestock species but not for rainbow trout.</p> <p>Results</p> <p>We observed that the level of LD between syntenic loci decayed rapidly at distances greater than 2 cM which is similar to observations of LD in other agriculturally important species including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for the NCCCWA broodstock population was 145, indicating that this population will respond well to high selection intensity. However, the range of effective population size based on individual chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are disproportionately under selection pressures.</p> <p>Conclusions</p> <p>Our results indicate that large numbers of markers, more than are currently available for this species, will be required to enable the use of genome-wide integrated mapping approaches aimed at identifying genes of interest in rainbow trout.</p

    Imbalanced nitrogen and phosphorus deposition in the urban and forest environments in southeast Tibet

    Get PDF
    In recent decades, high levels of anthropogenic emissions in China have dramatically increased nitrogen (N) deposition and may lead to an imbalance of atmospheric N and phosphorus (P) inputs in terrestrial ecosystems. However, currently the status of N and P deposition in southeast Tibet is poorly understood. Here, we investigated spatial and monthly patterns of N and P bulk deposition based on measurements of dissolved inorganic N (DIN, including ammonium N and nitrate N) and dissolved organic N (DON) and total dissolved P (TDP) in precipitation from March to October 2017. Measurements were made at an urban site in Nyingchi city (NC) and at a forest site in Sejila Mountain (SJL). Over the study period, monthly total dissolved N (the sum of DIN and DON) deposition fluxes totalled 4.6 and 3.6 kg N ha−1 at SJL and NC, respectively, of which dissolved organic nitrogen accounted for 35 and 38%. Monthly averages showed an increasing trend from March to June, and then a decrease during last two months (September and October). At both two sites, the ratios of ammonium to nitrate N in bulk deposition are greater than 1, indicating that reduced N mainly from agricultural sources dominated N deposition in study area. Monthly TDP deposition fluxes totalled 0.68 and 0.58 kg P ha−1 at SJL and NC, respectively, both of which showed an increasing trend from March to May and a decreasing trend from July to October. The N/P ratio was 6.1 and 6.8 at NC and SJL, respectively

    Hypervalent iodine reagents in the total synthesis of natural products

    Full text link

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
    corecore