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Abstract: In the last decades, in China a large amount of anthropogenic emissions has 12 

dramatically increased nitrogen (N) deposition and may lead to an imbalance of 13 

atmospheric N and phosphorus (P) inputs in terrestrial ecosystems. However, the 14 

status of N and P deposition in southeast Tibet is poorly understood. Here, we 15 

investigated spatial and monthly patterns of N and P deposition based on 16 

measurements of dissolved inorganic N (DIN, including ammonium N and nitrate N) 17 

and dissolved organic N (DON) and total dissolved P (TDP) in precipitation from 18 

March to October 2017 at an urban site in Nyingchi (NC) city and at a forest site in 19 

Sejila (SJL) Mountain. Over the study period, monthly total dissolved N (sum of DIN 20 

and DON) deposition fluxes summed 4.6 and 3.6 kg N ha-1 at SJL and NC per year, 21 

respectively, of which dissolved organic nitrogen accounted for 35% and 38%. 22 

Monthly averages showed an increase trend from March to June, and then decrease in 23 

autumn months (September and October). At both two sites, ratios of ammonium to 24 

nitrate N in bulk deposition are greater than 1, indicating reduced N mainly from 25 

agricultural sources dominated N deposition in study area. Monthly TDP deposition 26 

fluxes summed to 0.68 and 0.58 kg P ha-1 per year at SJL and NC, respectively, both 27 

of which showed an increased trend from March to May and decreased trend from 28 

July to October. The N/P ratio was 6.1 and 6.8 at NC and SJL, respectively. 29 
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nitrogen deposition; Tibet Plateau  31 

1. Introduction 32 

Nitrogen (N) and phosphorus (P) are essential elements for plant growth in 33 

terrestrial and marine ecosystems, but can also be considered as limiting elements 34 

when their supply does not meet demands by microbes and plants (Elser et al., 2007). 35 

Over the past few decades, reactive N (Nr) and P levels in the atmosphere have been 36 

increased significantly due to rapid development of industrialization and agricultural 37 

production, resulting in substantial increases in atmospheric N and P deposition to 38 

terrestrial ecosystems (Smil, 2000; Galloway et al., 2004; Liu et al., 2013). It has been 39 

estimated that at a global scale, anthropogenic Nr inputs to the biosphere were 40 

between 165–259 M ton N yr-1 globally, N deposition fluxes were about 114 M ton N 41 

yr-1 in the year 2000 and is expected to be a upward trend in the future (Peñuelas et al. 42 

2012). In contrast, anthropogenic P inputs to biosphere were 22-26 M ton N yr-1, and 43 

global P deposition were 3-4 M ton N yr-1 since 1980 but had no obvious temporal 44 

trend (Peñuelas et al. 2013). 45 

 Due to the negative effects from excessive deposition on the environment, many 46 

studies have quantified magnitudes of N and/or P deposition at regional or national 47 

scales and differentiate their chemical compositions, especially N deposition (Lü et al., 48 

2007; Duce et al., 2008; Jia et al., 2014; Lu et al., 2014; Zhu et al., 2015 Liang et al., 49 

2016). For example, based on 5-year field measurements, Xu et al. (2015) reported 50 

that total N deposition (wet and dry) ranged from 2.9 kg N ha-1 yr-1to 83.8 kg N ha-1 51 

yr-1 at 43 in situ monitoring sites across China. However, only few monitoring reports 52 

on atmosphere P deposition exist and are limited to particulate P (Luo et al., 2011; 53 

Parron et al., 2011; Hou et al., 2012; Du et al., 2016). It is well known that a complete 54 

quantification of P deposition is a big challenge, since P has no stable gaseous phase 55 

in the atmosphere and is mainly spread by wind in form of dust (Smil, 2000; 56 

Mahowald et al., 2008). At a national scale, Zhu at al. (2016) reported that wet P 57 

deposition ranged from 0.093 to 0.63 kg P ha-1 yr-1 at 41 in situ field stations across 58 

China. Their results also show that the ration of N to P in wet deposition was 77 (by 59 



mass), much higher than N:P ratios (~47, based on molar) of global N deposition in 60 

continents and/ or those of terrestrial plants (22-30, based on molar) (Peñuelas et al., 61 

2013). 62 

The Qinghai-Tibet plateau, occupying about one-fourth of the land area of China 63 

(Zhang et al., 2002), is sensitive to global climate change (Liu et al., 2013; Xu et al., 64 

2014). Long-term N addition can decrease the species richness of both vegetation and 65 

soil seed banks in alpine meadow ecosystems (Ma et al., 2014). At present, little is 66 

known about magnitude of N deposition in Qinghai-Tibet plateau (Liu et al., 2015; 67 

Zhu et al., 2015). In addition, atmospheric P deposition in the Qinghai-Tibet plateau 68 

remains unclear, especially in southeast Tibet, which accounted for 80% of the total 69 

forest area (1.47×107 ha) in Tibet Province. In this paper, we presented estimates of 70 

bulk N and P deposition at two field monitoring sites in Nyingchi (NC) city and Sejila 71 

(SJL) mountain during the main rain season from March to October 2017, with the 72 

purposes being to quantify fluxes, forms and monthly variations of N and P deposition 73 

(as precipitation with continuously-open collector) to better understanding the current 74 

status of N and P deposition and impacts in remote region of China.  75 

2. Materials and methods 76 

2.1 Site description 77 

For bulk N and P deposition measurements, the monitoring site in NC city was 78 

located at Xizang Agriculture and Animal Husbandry College (29°66'N 94°34'E 2990 79 

m a.g.l.), southeast of the city, whereas that in SJL mountain was established at the 80 

National Field Scientific Observation Station of Alpine Forest Ecosystem (29°65'N 81 

94°72'E 3950 m a.g.l.), on the edge of the NC city (Fig. 1). Nyingchi City is located 82 

beside the Niyang River, which was one of the main tributaries of the Brahmaputra. 83 

The climate is mainly dominated by warm air currents in the Indian Ocean, with an 84 

annual average temperature of 8.7℃ and an annual average precipitation of 650 mm. 85 

Tourism is a major local economic pillar industry. At NC site, there was no heavy 86 

industry nearby, and potential emission sources were a small village and agricultural 87 

fields. The SJL site was surrounded by original fir forest, in which undergrowth 88 



vegetation were mainly Sorbus, Rosa, Lonicera and some other herbaceous plant. At 89 

this site, there were no anthropogenic Nr emission sources except for a state road 90 

(#318). Annual average temperature was -0.73℃ and annual average precipitation 91 

was about 1000 mm.   92 

2.2 Sampling and chemical analysis 93 

The rainwater samples were collected by continuously-open rain gauge, and thus 94 

contain mainly wet and unquantifiable fractions from gaseous and particulate Nr in 95 

dry-deposited process. In other word, wet deposition measured in the present work is 96 

actually bulk deposition. Rain gauge consists of a stainless steel funnel and glass 97 

bottle and was installed 1.2 m above the ground. After each precipitation event, the 98 

rainwater samples were thoroughly stirred and immediately stored in clean 99 

polyethylene bottles (50 ml), and then, the rainwater-collecting bottle was rinsed with 100 

deionized water to eliminate cross contamination. All samples were filtered with a 101 

0.45 mm syringe filter (Tengda Inc., Tianjin, China), then filtrates were frozen in a 102 

refrigerator at -20 °C until prior to analysis in the laboratory.  103 

The laboratory analysis was performed according to Chinese standard methods. 104 

Total dissolved nitrogen (TDN) was measured by alkaline potassium persulfate 105 

digestion-UV spectrophotometric method (GB11894-89); Nitrate nitrogen (NO3
--N) 106 

was measured by UV spectrophotometric Method; ammonium nitrogen (NH4
+-N) was 107 

measured by reagent colorimetric method (GB7479-87)；Total dissolved phosphorus 108 

(TDP) was measured by ammonium molybdate spectrophotometric method 109 

(GB11893-89); Rainwater was digested using intelligent multiparameter digestion 110 

meter (LH-25A, Lianhua, China). NO3
--N, NH4

+-N, and TDP were measured using 111 

ultraviolet and visible spectrophotometer (DR6000 ， HACH ， America). DON 112 

concentration was defined as the difference between the TDN and inorganic N 113 

(NH4
+-N and NO3

--N) concentrations (Zhang et al., 2012). During each analysis, 114 

rainwater samples were analyzed in duplicates and each analysis run consisted of 8 115 

samples, one blank and a set of standard concentrations of NH4
+-N, NO3

--N and TDN. 116 

Standard solutions were prepared in deionized water with concentrations ranges both 117 

0-1 mg L-1 for NH4
+-N and NO3

--N, and 0-2 mg L-1 for TDN. TDP contains phosphate 118 
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and dissolved organic P. Duplicate blank and standard reference materials 119 

(monopotassium phosphate, KH2PO4) methods were used for quality assurance. 120 

2.3 Data calculation and analysis 121 

Monthly Nr (TDN, NH4
+-N, NO3

--N, DON) bulk deposition fluxes were 122 

calculated as follows: 123 

N=  124 

Monthly dissolved phosphorus deposition fluxes were calculated as follows: 125 

D=  126 

where P is the precipitation per month(mm); N is bulk deposition fluxes of 127 

measured Nr species (TDN, NH4
+-N, NO3

--N) (kg ha-1 month-1); D is the total 128 

dissolved phosphorus deposition fluxes (kg ha-1 month-1); i is the number of 129 

precipitations per month; Pi is the precipitation volume in i precipitation events; Ni is 130 

the volume-weighted mean concentration of measured Nr (TDN, NH4
+-N, NO3

--N) 131 

components in i precipitation events; Di is the is the volume-weighted mean 132 

concentration of TDP in i precipitation events; 100 is the unit conversion factor of 133 

mgm-2 to kgha-1 .  134 

2.4 Statistical analysis  135 

Pearson correlation and regression analyses were conducted using the SPSS 136 

software package, version 20.0 (SPSS Inc., Chicago, IL), and significance was tested 137 

using a significance level (P) of 0.05. 138 

2.5 Backward trajectory analysis 139 

To recognize the potential sources and transport routes of air pollutants and 140 

precipitation clouds, air mass backward trajectory analysis was performed using the 141 

Hybrid-Single Particle Integrated Trajectory Model (HYSPLIT 4) (Xu et al., 2017), 142 

provided by the Air Resource Laboratory of National Oceanic and Atmospheric 143 

Administration (NOAA) (Stein et al., 2015; Roy et al., 2016). Meteorological data 144 

were input from the Global Data Assimilation System (GDAS) meteorological data 145 

archives of the Air Resource Laboratory, National Oceanic and Atmospheric 146 

Administration (NOAA). Three-day backward trajectories were calculated at 6 h 147 



intervals (00:00, 06:00, 12:00, 18:00 UTC) on sampling days at both two study sites, 148 

with arrival height of 500 m above ground level. Then, cluster analysis was performed 149 

using the trajectories based on the total spatial variance (TSV) method (Draxler et al., 150 

2012). 151 

3. Results 152 

3.1 Concentrations of Nr species and TDP in precipitation 153 

Total rainfall amounts during March-October, the main rain season were 624.8 154 

mm at NC and 838.3mm at SJL. Monthly precipitation amounts at SJL were higher 155 

than those at LZ city in all months except March and September (Fig. 2a). As showed 156 

in Fig. 3, total volume-weighted mean concentrations of NH4
+-N were slightly higher 157 

than those of NO3
--N at both monitoring sites (0.19 versus 0.17 mg/L at SJL, and 0.22 158 

versus 0.13 kg N ha-1 at NC). In general, concentration of NH4
+-N, DON, TDN and 159 

TDP at NC were all higher than those at SJL, but opposite behavior occurred for 160 

NO3
--N. 161 

3.2 Atmosphere bulk deposition of Nr species and TDP  162 

During the study period, monthly bulk deposition fluxes of NO3
--N, NH4

+-N and 163 

DON were in the ranges of 0.01-0.23, 0.02-0.32, and 0.02-0.30 kg N ha-1 at NC, 164 

respectively, whereas those were in the ranges of 0.02-0.35, 0.02-0.42, 0.02-0.47 kg N 165 

ha-1 at SJL (Figs. 2d-f). At both two sites, bulk NO3
--N, NH4

+-N and DON deposition 166 

fluxes generally show an increasing trend from March to June, and decrease trend 167 

from August to October. Compared with SJL, bulk deposition fluxes of NO3
--N at NC 168 

were lower in all months. Differently, bulk NH4
+-N deposition fluxes were higher in 169 

March, May, September and October, bulk DON deposition fluxes were higher in July 170 

and September, but lower in other months. In total, bulk TDN deposition fluxes at NC 171 

were lower than those at SJL in all months except September (Fig. 2b). At each site, 172 

bulk TDN deposition fluxes showed a significant and positive correlation with 173 

precipitation amounts (Fig. 4a). 174 

Monthly TDP deposition ranged from 0.01 to 0.16 kg ha -1 at SJL, and from 0.01 175 

to 0.14 kg P ha -1at NC (Fig. 2c), with an increasing trend from March to May, and a 176 



decreasing trend from Jul to October. The TDP deposition fluxes at SJL were higher 177 

than those at NC in all months except April and September. A positive linear 178 

relationship was found between TDP deposition fluxes and precipitation amounts at 179 

both two sites (Fig. 4b).   180 

Based on monthly averages in the main rainy season, bulk deposition fluxes of 181 

TDN at SJL and NC summed 4.62 and 3.57 kg N ha-1, respectively, with contributions 182 

of 34% and 38% from DON. Bulk deposition fluxes of TDP summed 0.68 and 0.58 kg 183 

P ha-1 at SJL and NC, respectively. (Fig. 5). The N/P ratio was 6.76 and 6.11 at SJL 184 

and NC, respectively.         185 

4. Discussion 186 

A large variability in the monthly volume-weighted mean concentrations of Nr 187 

species (NH4
+-N, NO3

--N, and DON) and TDP in bulk precipitation was found at both 188 

study sites. The lowest concentrations in bulk precipitation are associated with the 189 

highest precipitation rates during summer months (Pineda Rojas and Venegas, 2010). 190 

This can be explained because the first drops of rainfall perform an intense 191 

atmospheric N and P scavenging, which increases the rainwater N and P concentration 192 

in low rainfall events (Al-Khashman, 2009; Zhang et al., 2012; Sun et al., 2014). We 193 

observed that NH4
+-N and NO3

--N concentrations in bulk precipitation are positively 194 

well correlated at the NC site (R2=0.31, P<0.05) (Fig. 6a), suggesting the existence of 195 

dissolved NH4NO3 in precipitation from the atmosphere (Bertollini et al., 2016). The 196 

presence of NH4NO3 in precipitation is related to volatilized fertilizers which have 197 

been dissolved in rain droplets and deposited in rainfall events (Niu et al., 2014). The 198 

relationships between DON and NO3
--N, and DON and NH4

+-N concentrations at NC 199 

were negative and statistically significant and were correlated by fitting a logarithmic 200 

model (Figs. 6b and c). These results indicate similar origins of atmospheric organic 201 

and inorganic N compounds in bulk deposition at NC sites. In contrast, the 202 

correlations between NH4
+-N, NO3

--N and DON were all not statistically significant 203 

(P>0.05) at SJL. A non-significant correlation was also reported by several other 204 

previous studies (Neff et al., 2002; Yang et al., 2010). The different chemical 205 



composition correlations between the NC and SJL sites is likely linked with the 206 

differences in wet scavenging (in-cloud and below-cloud) of gases and particles and 207 

sources of DON, which can affect concentrations of inorganic and organic Nr species 208 

in precipitation (Seinfeld and Pandis, 1998; Yang et al., 2010).  209 

Bulk N deposition is influenced by several factors, such as precipitation amounts 210 

and the seasonal variability of emission sources as well as N removal from the 211 

atmosphere via chemical and physical processes (Yu et al., 2011; Kuang et al., 2016; 212 

Liu et al., 2016; Calvo-Fernández et al., 2017; Xing et al., 2017; Xu et al., 2018). The 213 

present results show that precipitation amounts varies greatly between different 214 

months at the two study sites, with higher levels in May, June, July, and August (Fig. 215 

2a).  Higher bulk N and TDP deposition fluxes were also found corresponding to 216 

those months (Fig. 2b,c). We also observed relatively high NO3
--N deposition fluxes 217 

in June and September at SJL. Not surprisingly, a high deposition level was observed 218 

in September when precipitation amounts were relatively small. Diesel generators, a 219 

major NOx emission source (Liu et al., 2011), were frequently used for construction 220 

and reconstruction works carrying out only in September at SJL. Thus, an elevated 221 

atmospheric NOx level resulting from large amounts of NOx emissions from Diesel 222 

generators is a likely explanation for high NO3
--N deposition fluxes. Estimated 223 

NH4
+-N deposition fluxes were  higher in May at NC, which is likely due to the 224 

increased volatilization of NH3 from local agricultural activities (cultivation and 225 

fertilization) in April and May caused by higher temperatures (Xu et al., 2014).  226 

DON categories mainly include reduced organic nitrogen, oxidized organic 227 

nitrogen and biological organic nitrogen (Graedel et al., 1986). It has been reported 228 

that the averaged DON deposition flux was 6.84 kg N ha-1 yr-1, and accounted for 229 

more than 50% of total N deposition fluxes in a forest ecosystem (Zhang et al., 2012). 230 

A similar phenomenon was also observed in the present work. DON deposition fluxes 231 

were extremely high in June at SJL, mainly due to relatively high pollen grain 232 

sedimentation in summer (Bovallius et al., 1978). Similarly monthly TDP deposition 233 

fluxes were higher during May-July compared to other months at both monitoring site, 234 

especially at SJL (Fig. 4). This can be attributed to the fact that atmosphere 235 
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pollen grain sedimentation is the major source of atmospheric P deposition 236 

(Mahowald et al. 2008). It has been estimated that the phosphorus content was about 237 

0.5% in Euphoria longan pollen grain (Liu et al., 1995). SJL Mountain, the selected 238 

monitoring site was located in a clearing surrounded by plants like Abies georgei, 239 

Sorbus rehderiana, Rosa multiflora, all of which flowered during May-late July every 240 

year, thus lead to relatively higher bulk TDP deposition. 241 

For the Qinghai-Tibet plateau, bulk N deposition fluxes averaged 7.62 ± 8.60 kg 242 

N ha−1 yr−1 at two urban and forest sites (Xu et al., 2015)Error! Bookmark not 243 

defined.. Wet N deposition levels ranged from 0.44 to 1.55 kg N ha−1 yr−1 for 244 

inorganic N at 5 remote sites (Liu et al., 2015), with 8.36 ± 4.19 kg N ha−1 yr−1 245 

estimated for total dissolved N deposition at a regional scale (Zhu et al., 2016). These 246 

results imply the existence of large spatial variability in wet/bulk N deposition in the 247 

Tibet plateau. By contrast, bulk TDN deposition fluxes we measured were 4.62 and 248 

3.57 kg N ha−1 at SJL and NC, respectively. According to the China Meteorological 249 

Data Network statistics (http://data.cma.cn/data/weatherBk.html), the average 250 

precipitation amount from November to February was 11.4mm during the last 30 251 

years (1981-2010) next year in NC city, accounting for 1.6% of the annual 252 

precipitation amount. Given such relatively low precipitation from October to 253 

February, the fluxes measured during March-October at NC and SJC can reflect their 254 

respective annual deposition levels to some extent.  Similar research hasreported that 255 

average total dissolved N deposition was 7.9 kg N ha-1 yr-1 during 2012-2013  in a 256 

southeast forest ecosystem (Liu et al., 2016). It is commonly accepted that N and P 257 

deposition have been enhanced by human activities (Peñuelas et al. 2012; Peñuelas et 258 

al., 2013). However, bulk N deposition fluxes were higher at SJL compared with 259 

those at NC (Fig. 5), although the former is considered to be a remote forest 260 

monitoring site. This is mainly due to higher precipitation amounts at SJL than at NC 261 

(Fig. 2a), since bulk N deposition fluxes were influenced not only by rainfall Nr 262 

concentration but also by precipitation amounts (Xu et al., 2015) Compared with other 263 

Nr species, bulk NO3
--N deposition fluxes differed clearly between SJL and NC (Fig. 264 

3). One explanation is that SJL mountain monitoring site is located near State Road 265 
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(#318) (which is a major road in Tibet), and thus was polluted by NOx emissions from 266 

fossil fuel combustion in transportation (Liu et al. 2011). It should be pointed out that 267 

bulk deposition is used here to refer to wet plus part of the dry deposition collected by 268 

rain gauges that remain open to the atmosphere. Based on a full two-year (2014-2015) 269 

measurements of monthly NO2 and NH3 concentration at a suburban site in Xining 270 

City, Qinghai Province, Xu et al. (2017b) found that dry N deposition accounted for 271 

46% of the total deposited N. This highlights the importance of dry deposition in the 272 

urban environment, even in remote area of China. Thus, to assess the influence from 273 

dry deposition, a comparison of mean bulk deposition and wet-only deposition at two 274 

study sites is recommended in future studies. 275 

The NH4
+-N and NO3

--N concentrations in precipitation reflect the composition 276 

of gaseous and particulate Nr species in the atmosphere (Celle-Jeanton et al., 2009; 277 

Niu et al., 2014). Thus, the NH4
+-N/NO3

--N ratio in precipitation is a useful tool to 278 

identify the predominant sources of N depositions in a targeted area (Xu et al., 2015). 279 

It is widely agreed that a NH4
+-N/NO3

--N deposition ratio <1 within industrialized 280 

regions and >1 within intensive agricultural regions (Xu et al., 2009). In the present 281 

study, NH4
+-N/NO3

--N ratios in bulk deposition are greater than 1 at both the NC site 282 

(average 1.70) and the SJL site (average 1.14), indicating that agricultural sources 283 

(e.g., fertilized pastureland and farmland areas) dominate atmospheric N deposition in 284 

the target area relative to industrial sources (e.g., transportation and combustion) . In 285 

addition to local emission sources, long-range atmospheric transport of air mass also 286 

has influences on N and/or P deposition at remote areas in Tibet (Liu et al., 2015; Xu 287 

et al., 2017a). Based on the origin areas and transport directions, three and four 288 

categories of air masses were identified from the entire set of trajectories at the NC 289 

and SJL sites, respectively (Fig. 7). It is evident that the precipitation events during 290 

the sampling period at both sites were dominated by air masses from the south region, 291 

with the proportion of 65% and 62%, respectively. This is becausesoutheast Tibet is 292 

influenced by a southwest monsoon and the wind is mainly from the south (Yang et 293 

al., 2012) where no heavy pollution sources are located. In addition, the 294 

volume-weighted mean concentrations of DIN (NH4
+-N and NO3

--N), DON and TDP 295 



in precipitation associated with two categories air masses (south and northwest) were 296 

analyzed. As presented in Table 1, there were no large differences in concentrations 297 

between the two directions. These results together to some extent suggest that 298 

regional transport has little influences on N and P deposition at the two study sites, 299 

which is more likely to be driven by local emission sources. 300 

The chemical form of N input from the atmosphere plays a vital role in 301 

regulating nutrient assimilation processes for plant growth in a wide variety of 302 

ecosystems (Stevens et al., 2011; Harmens et al., 2014; Izquieta-Rojano et al., 2016). 303 

Sheppard et al. (2014) demonstrated that NH4
+-N is more likely to be toxic to plant 304 

root assimilation compared to NO3
--N. We found that NH4

+-N input was higher than 305 

NO3
--N input, which might have potential harmful effects on local vegetation. Besides, 306 

NH4
+-N deposition has a greater influence on vegetation composition compared to 307 

NO3
--N deposition (van den Berg et al., 2016), since NH4

+-N deposition can lead to 308 

soil acidification by release of H+ ions (Du et al., 2015); being the main pathway of 309 

biodiversity loss in ecosystems adapted to N-poor conditions (Boutin et al., 2015). 310 

This could greatly affect biodiversity in subalpine coniferous forest and temperate 311 

deciduous conifer mixed forest in southeast Tibet, which is recognized as a 312 

biodiversity hotspot and is sensitive to elevated N deposition (You et al., 2013; Zhang 313 

et al., 2014). Regarding the seasonal variation in bulk precipitation, the high NH4
+-N 314 

and NO3
--N deposition fluxes in summer (June, July and August) could affect the 315 

nutrient balance of N-poor ecosystems such as native fir forest (Edfast et al. 1990), 316 

since this period is the vegetation growing season and deposited N can be absorbed by 317 

vegetation in maximum degree. Earlier studies have demonstrated that an increase in 318 

N deposition could result in a series of adverse effects on forest ecosystems, including 319 

soil acidification (Bergkvist et al., 1992), ion leaching (Foster et al. 1989), increase of 320 

leaf N concentration and photosynthetic rate (Magill et al. 2000; Nakji at al., 2001). 321 

Atmospheric wet P deposition was on average 0.21 kg P ha−1 yr-1 (ranging from 322 

0.002 to 2.53 kg P ha−1 yr-1) at 41 in situ observation sites across China and was 0.21 323 

kg P ha−1 yr-1on a global scale (Zhu et al., 2016; Tipping et al., 2014). At a point scale, 324 

earlier studies based on field measurements demonstrated that bulk P deposition was 325 



1.82 kg P ha-1yr-1 in Nanjing city (Sun et al., 2014), and wet P deposition was 0.9 kg P 326 

ha-1yr-1 in Lake Taihu (Yang et al 2007). In the present study, bulk P deposition fluxes 327 

were 0.58 and 0.68 kg P ha−1 at the NC and SJL sites, respectively. Obviously, 328 

estimated bulk P deposition in the study area was higher than the average levels in 329 

China and in the world, but lower than those measured in southeast China.    330 

Unbalanced human-induced N and P inputs to the atmosphere led to an increase 331 

in the N/P ratio in wet/bulk deposition. Many studies has illustrated that the current 332 

situation of N and P deposition shifts all over the world (Peñuelas et al. 2013; 333 

Peñuelas et al., 2015). For example, foliar N concentrations from non-agricultural 334 

ecosystems throughout China significantly increased from 1980 to 2000 in the context 335 

of enhanced N deposition (Liu et al., 2013). It has been estimated that the N/P ratio in 336 

bulk deposition was about 21.2 at a global scale and about 77 (based on mass) at a 337 

national scale in China. At a regional scale, N/P ratios (based on mass) varied greatly 338 

in different regions of China. For example, the N/P ratio was 10 in Yangzonghai (Yu 339 

et al., 2017), 77 in Hangjiahu area (Wang et al., 2015), 30 in Nanjing city (Sun et al., 340 

2014), 14 in Taihu lake (Yang et al., 2007). Furthermore, due to enhanced N 341 

deposition globally and intensified human activities in Tibet, Nr deposition is 342 

expected to increase continuously in the future, which could promote plant growth 343 

and further affect local plant community structure or phytocoenosis evolution. 344 

5. Conclusions  345 

The present study measured bulk deposition fluxes of DIN, DON and TDP at an 346 

urban (NC) site and a forest (SJL) site in the southeast of the Tibetan Plateau during 347 

the i main rainy seasons from March to October 2017. Total deposition of TDN and 348 

TDP was 4.62 kg N ha-1 yr-1 and 0.68 kg P ha-1 yr-1 at SJL, and 3.57 kg N ha-1 yr-1 and 349 

0.58 kg P ha-1 yr-1 at NC, respectively, with N/P ratios of 6.8 and 6.1. TDN and TDP 350 

deposition fluxes were higher at SJL compared with those at NC, but the opposite 351 

phenomenon was observed for TDN and TDP concentrations. At both o sites, DIN 352 

deposition accounted for 65% and 62% of TIN deposition fluxes, with 353 

NH4
+-N/NO3

--N ratios greater than 1. In order to obtain systematic knowledge on the 354 
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sources, composition and rates of N and P deposition as well as its ecological effects, 355 

additional monitoring sites, covering typical land use types in the region, should be 356 

established in the futureadopting standardized sampling protocols and analytical 357 

methods.  358 
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 623 

Figure captions 624 

Figure 1. Location of the two monitoring sites in Nyingchi city, southeast Tibet 625 

Figure 2. Monthly precipitations and bulk deposition fluxes of N and P at the two 626 

monitoring sites 627 

Figure 3. Volume-weighted mean concentration of Nr species and P in precipitation 628 

Figure 4. Correlations between precipitation and N deposition fluxes (a) and P 629 

deposition fluxes (b) at the two sampling sites 630 

Figure 5. Total N and P deposition fluxes during the observation period at the two 631 

monitoring sites 632 

Figure 6. Correlation between concentrations of NO3
--N and NH4

+-N (a), between 633 

concentrations of NO3
--N and DON (b) and concentrations of NH4

+-N and DON (c) at 634 

the two sites 635 

Figure 7. 3-day backward trajectories at NC (a) and SJL (b) sites in southeast Tibet. 636 

Lines with different colors show the clustering trajectories. 637 

638 
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Table 1. Volume weight mean concentration (mg L-1) in 

precipitation under the influences of two categories air masses 

Site Direction a NO3
--N NH4

+-N DON TDN TDP 

NC 

S 0.111 0.210 0.238 0.559 0.095 

NW 0.144 0.265 0.199 0.609 0.089 

SJL 
S 0.181 0.187 0.202 0.569 0.078 

NW 0.147 0.202 0.170 0.518 0.088 

a S: south; NW: northwest.  
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