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 7 

Pentatricopeptide repeat (PPR) proteins are important RNA regulators in chloroplasts and mitochondria, 8 

aiding in RNA editing, maturation, stabilisation or intron splicing, and in transcription and translation 9 

of organellar genes. In this review, we summarise all PPR proteins documented so far in plants and the 10 

green alga Chlamydomonas. By further analysis of the known target RNAs from Arabidopsis thaliana 11 

PPR proteins, we find that all organellar-encoded complexes are regulated by these proteins, although 12 

to differing extents. In particular, the orthologous complexes of NADH dehydrogenase (Complex I) in 13 

the mitochondria and NADH dehydrogenase-like (NDH) complex in the chloroplast were the most 14 

regulated, with respectively 60 and 28% of all characterised A. thaliana PPR proteins targeting their 15 

genes. 16 

Abbreviations – CMS, Cytoplasm Male Sterility; PMT, Post-transcriptional modification; T/P/OPR, 17 

tetra-, penta-, octo-tricopeptide repeat. 18 

 19 

The need to regulate organelle genetic expression 20 

Photosynthesis and respiration, which arose initially in prokaryotic organisms, requires the assembly of 21 

many different components to form functional protein complexes (Vermaas 2001) and networks for 22 

effective electron transfer (Anraku 1988). After the endosymbiotic events in which a free-living 23 

cyanobacterium and an alpha-proteobacterium gave rise respectively to the chloroplasts and 24 

mitochondria found in eukaryotic cells, there was migration of essential genes from the “new organelle” 25 

to the nucleus. In the majority of present-day photosynthetic eukaryotes we find only around 5% of the 26 
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several thousand chloroplast proteins encoded in the organelle (Martin et al. 2002), and even fewer of 1 

the mitochondrial proteins. Nonetheless, the genes that remain encode many of the key proteins of the 2 

photosynthetic and respiratory processes. Having three different compartments synthesising organellar 3 

proteins poses a major challenge to regulate precisely and efficiently the expression of the various 4 

components in the proper dosage. A key question therefore is how the nucleus orchestrates the 5 

production and assembly of these complex structures, in particular to achieve a fine-tuned balance of 6 

the different components of the photosynthetic and respiratory machinery.  7 

The organelle environment has retained many bacterial properties from the endosymbiotic events, and 8 

there are many similarities between the genetic machinery of chloroplasts and mitochondria and in 9 

bacteria. Nonetheless there is little regulation of transcriptional processes in organelles, and mRNA 10 

levels do not correlate with protein abundance (del Campo 2009). Instead, eukaryotes have focussed 11 

their efforts on developing highly complex and effective post-transcriptional factors that influence 12 

photosynthetic and mitochondrial component dosages and correct assembly of the complexes by RNA 13 

stabilisation, modification, editing, and translation (Rochaix 2002). One group of proteins intimately 14 

involved in this system are the so-called pentatricopeptide repeat (PPR) proteins, which are RNA 15 

binding and are involved in the maturation of organelle RNA in eukaryotic organisms(Barkan and Small 16 

2014). These proteins are closely related to tetraricopeptide repeat (TPR) proteins involved in protein-17 

protein interactions and share functionality with the octotricopeptide repeat (OPR) proteins (Rahire et 18 

al. 2012. Bohne et al. 2016).  19 

T/P/OPR proteins are members of the alpha-solenoid family of proteins. They contain between 2 and 30 20 

degenerate 34, 35 or 38 amino acid helical repeats respectively, which stack together to form extended 21 

surfaces that recognise DNA, RNA or other proteins (Kobe and Kajava 2000) (Fig. S1). This repeat is 22 

often degenerate, although it can be easily recognised by its repetition and some consensus amino acids 23 

that are highly conserved (Small and Peeters 2000). Each repeat contains two antiparallel alpha helixes 24 

that, in the case of PPRs, are thought specifically to recognise an RNA base (Delannoy et al. 2007). In 25 

higher plants such as A. thaliana, there are hundreds of PPR proteins encoded in the nucleus, the vast 26 

majority of them targeted to mitochondria or chloroplasts (Colcombet et al. 2013). The high number of 27 

PPRs in land plants been linked to the extent of post-transcriptional editing of mRNA from C to U of 28 

the different organellar mRNA (Barkan and Small 2014). This is supported by the fact that there are no 29 
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reports of post-transcriptional editing of chloroplast or mitochondrial mRNAs in the green alga 1 

Chlamydomonas reinhardtii, which has only 14 PPR proteins (Tourasse et al. 2013). However, A. 2 

thaliana encodes just one OPR protein, RAP, which is involved in the processing of the chloroplast 16S 3 

ribosomal RNA (Kleinknecht et al. 2014), whereas C. reinhardtii has more than forty OPR proteins 4 

(Eberhard et al. 2011). This might therefore indicate different evolutionary routes for the two 5 

photosynthetic organisms in the control of their organelle genes: expansion of either PPRs or OPRs.  6 

Investigation of the function of PPR proteins, either individually or in systematic studies such as by 7 

Cheng et al. (2016), have revealed that their effect is not limited to RNA stability or RNA editing, but 8 

includes processing of polycistronic mRNAs (Meierhoff et al. 2003), translation of various mRNA with 9 

which they associate (Yamazaki et al. 2004), and intron splicing of organellar group II introns 10 

(Khrouchtchova et al. 2012). There have been several detailed reviews of PPR proteins and their 11 

functioning over the last few years (Schmitz-Linneweber and Barkan 2007, Stern et al. 2010, Shikanai 12 

and Fujii 2013, Tourasse et al. 2013, Barkan and Small 2014, Hammani et al. 2014, Manna 2015). Here, 13 

we gather what is known of PPR proteins specifically in photosynthetic organisms, documenting where 14 

known their organelle targeting, their mechanism of function, their target genes and what effect knocking 15 

out or down that specific PPR has on the organelle and/or the host organism. We then analyse further 16 

the PPR proteins in A. thaliana to provide a first detailed examination of their role in a single organism.  17 

 18 

PPR proteins are found throughout the plant kingdom 19 

PPR proteins play crucial roles in plant function and development, with more evidence gained every 20 

year. Since their discovery in 2000 (Small and Peeters 2000), the realisation of the scale of their 21 

representation in plant genomes has been recognised, with ~450 in A. thaliana and close to 600 in maize 22 

(Lurin et al. 2004). The majority have been identified simply from their predicted amino acid sequences, 23 

but a total of 188 PPR proteins from photosynthetic organisms have been further characterised to some 24 

extent. Supplementary Dataset 1 lists all these documented PPR proteins, with a summary in Table 1. 25 

More than half of the studies describe a PPR protein from A. thaliana, reporting a total of 41 chloroplast-26 

targeted PPR proteins and 63 mitochondrially localised. There are also reports on agriculturally relevant 27 

species such as Zea mays (maize) or Oryza sativa (rice), which combined represent 25% of the total 28 
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(Table 1). For those from “other plant species” the majority did not characterise the PPR function directly 1 

but instead linked it to an observed phenotype, most commonly cytoplasmic male sterility (CMS) 2 

(Gillman et al. 2007, Uyttewaal et al. 2008, Liu et al. 2016). This is where ordinarily monoecious plants 3 

are converted to females because of pollen abortion, a desirable agronomic trait for ease of production 4 

of hybrid lines (reviewed in Budar et al. 2003). In order to consider the molecular details of the function 5 

and target genes of PPRs, and to gain relevant insight into the overall role of PPRs more generally, we 6 

decided to focus solely on the A. thaliana data due to the high numbers of PPRs characterised, 108 in 7 

total, representing almost a quarter of all PPRs in this plant. 8 

 9 

Editing is the most prevalent function of A. thaliana PPR proteins  10 

Based on analyses of knockout lines for each of the characterised A. thaliana PPR proteins, it is possible 11 

to determine their targets and which aspect of post-transcriptional modification (PTM) they affect (Table 12 

2). The different PTMs that PPR proteins are important for are mRNA stabilisation, transcript processing, 13 

intron splicing, and RNA editing, as well as effects on the translation of certain mRNAs (for a 14 

comprehensive review of PTMs refer to Stern et al. 2010). Inspection of the various PTMs of 15 

mitochondrial and chloroplast genes by the different 108 PPR proteins, presented in Table 2, reveals 16 

some interesting observations. Firstly, all organelle encoded processes are affected by at least one PPR 17 

protein. We also found that the frequency of PPRs involved in mRNA stabilisation and translation is 18 

quite low in both organelles, whereas that for mRNA processing and intron splicing is more common. 19 

By far and away the most frequent prevalent effect is that of RNA editing, accounting for 40 of 76 (53%) 20 

of the PTMs identified in the chloroplast, and 65 of 95 (68%) in the mitochondria.  21 

This high frequency of RNA editing is found in land plants and it is often correlated with the high 22 

abundance of PPR proteins. The reason for so many editing PPRs has been proposed to be as a means 23 

for the cell to ‘debug’ the genetic material in the organelles, which is transmitted by asexual reproduction, 24 

so there is no opportunity for gene conversion during recombination (Maier et al. 2008). This repair 25 

would be more necessary for the land plants due to the higher rates of UV radiation. The debugging 26 

theory states that after the mutation has occurred, a PPR protein would evolve to fix it. However, mutants 27 

incapable of editing the chloroplast-targeted CLB19 (Ramos-Vega et al. 2015) or the mitochondrial 28 
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REME2 (Bentolila et al. 2013) resulted in lethality, implying the reverse order of events. Moreover, on 1 

four other occasions mutations of these PPR proteins led to impaired gametogenesis but not lethality 2 

(Lu et al. 2011, Sun et al. 2018) making it impossible to select for these organellar mutations in the first 3 

place. Instead, the theory of neutral evolution theory is more likely to be operating here. This theory 4 

(reviewed in Barkan and Small 2014) proposes that biology tends to evolve complexity by having 5 

processes in the cell that are redundant or do not have any effect in the functioning of the cell. This could 6 

explain why in a third of the cases analysed in this review, 59 of 171 (34%), there is no physiological 7 

effect when editing of a particular gene is impaired (Robbins et al. 2009, Brehme et al. 2015) (Table 2 8 

and Supplementary Dataset 1).  9 

However, from the data presented in Table 2, we can see that there is a higher proportion of “no 10 

phenotype” in the mitochondria than in the chloroplast, which might be due to the greater number of 11 

editing by PPR proteins that happens in this organelle. Interestingly, if we link the post-transcriptional 12 

processes to the “no phenotype”, we can see that editing accounts for 15 of 16 cases in the chloroplast 13 

and 34 of 41 in the mitochondria. This suggests that editing is favoured by neutral evolution probably 14 

because it provides more opportunity for evolution via the degenerate code and synonymous and neutral 15 

amino acid mutations. However, “no phenotype” is not restricted to editing, it is also seen for PPRs 16 

involved in RNA stability (Stoll et al. 2014), processing (Fujii et al. 2016) and intron splicing (Yap et al. 17 

2015) although to a significantly lesser extent. Nonetheless, it is possible that it was not possible to 18 

quantify the effect of the knock-out or that these proteins work in a highly complex network where they 19 

have a dose effect in the function of the target gene. For example, A. thaliana nad4 is edited by eight 20 

different PPRs (Fig. 1) and, in half of the cases, the lack of editing has no significant phenotype. This 21 

could provide a safety net for possible random mutations in the PPR transcripts or in the target mRNA. 22 

Despite the high correlation of editing and “no phenotype” seen in our analysis, it is worth pointing out 23 

that editing can play a crucial role in plants, especially in ferns where it has been reported that editing 24 

for the creation of the start codon is conserved and poses a selective advantage over having a translatable 25 

sequence encoded in the genome (Li et al. 2018).  26 

 27 

NADH dehydrogenase: the main target? 28 
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Figure 2 shows a schematic of the complexes found in the chloroplast thylakoid and mitochondrial inner 1 

membranes as well as soluble proteins, together with a compilation of the numbers of PPR proteins 2 

known to act on each one. Each complex has components whose transcripts are influenced by at least 2 3 

PPR proteins. Surprisingly, the vast majority of the PPR proteins, a total of 78 of 108 analysed so far, 4 

are linked to two similar complexes in the organelles, the mitochondrial NADH dehydrogenase 5 

(Complex I) and the NADH dehydrogenase-like (NDH) complex in the chloroplast. These complexes 6 

share a common L-shaped form (Shikanai 2016) and both catalyse proton translocation across the 7 

membrane during electron transfer to a quinone, but their roles are quite different. The chloroplast NDH 8 

is a ferredoxin-dependent plastoquinone reductase involved in PSI cyclic electron transfer and is 9 

important for optimising the induction of photosynthesis in water stress. Nevertheless, the complex is 10 

not necessary for growth in optimal conditions (Burrows et al. 1998) and its genes are the first to be lost 11 

in nonphotosynthetic orchids (Schelkunov et al. 2015). In contrast, Complex I is responsible for 12 

oxidation of NADH produced during respiration and it is the main point of entry of electrons into the 13 

mitochondrial electron transport chain (mETC) providing up to 40% of the protons for the formation of 14 

ATP (Fromm et al. 2016). Unlike its chloroplast counterpart, lack of this complex affects carbon 15 

metabolism and photosynthesis (Fromm et al. 2016), and entails profound changes leading to curled 16 

leaves and delayed reproductive and vegetative development phenotype (de Longevialle et al. 2007). 17 

Surprisingly, recent studies have found that hemiparasitic mistletoe has lost the availability to produce 18 

a functional Complex I (da Fonseca-Pereira et al. 2018) pointing to more similarities to the NDH 19 

complex. 20 

In the chloroplast, 24 of 85 (28%) of the total characterised chloroplast PTM events are involved with 21 

the NDH complex, for its mitochondrial counterpart, NADH dehydrogenase, this number is increased 22 

to 60 of 99 (60%) (Fig. 2). The number of PPRs affecting the NDH/NADH complexes is substantially 23 

greater than for the other complexes. Similarly, in Oryza sativa and Zea mays, PPRs affecting the NDH 24 

and NADH dehydrogenase are 7 of 27 (26%) and 15 of 24 (62%) respectively. These high numbers 25 

could be attributed to the theory of neutral evolution: these complexes are not vital for the plant, in 26 

contrast to the ATPases or the two photosystems, allowing minor deficiencies from mutations and other 27 

post-transcriptional processes to be better tolerated.  28 

Alignment of NDH and NADH dehydrogenase PPR proteins with each other does not reveal any 29 
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similarity, neither between PPRs targeted to the same organelle, nor linked to orthologous subunits (data 1 

not shown). The absence of similar patterns is illustrated by consideration of how two gene orthologues 2 

from NADH dehydrogenase (nad4) and NDH (ndhD) are modified, processed and protected by their 3 

respective PPRs. Both transcripts are heavily edited, but the editing sites are not localised in the same 4 

area (Fig. 1). Moreover, mitochondrial nad4 also has PPR-aided intron splicing, 5’ processing and 3’ 5 

stabilisation, whereas ndhD does not (Fig. 1). Thus, it is likely that the PPR and the post-transcriptional 6 

modification mechanisms evolved separately for these two genes. 7 

Nevertheless, it is worth noting that in the A. thaliana chloroplast and mitochondrion all complexes that 8 

have at least one element encoded in the organelle genomes are influenced by PPR proteins. The extent 9 

of involvement in the post-transcriptional processes varies depending on the complex involved, with 10 

ATP synthase being the least regulated in both organelles, perhaps because of the vital function that it 11 

carries out in the cell. We found similar numbers of PPRs involved in the chloroplast cytochrome b6f 12 

complex and the mitochondrial counterpart the cytochrome bc1 complex. In the mitochondria, more than 13 

half of the PPR proteins associated with the cytochrome bc1 (Complex III) and cytochrome oxidase 14 

(Complex IV) interact with genes involved in biogenesis (Tang et al. 2010) and maturation (Chateigner-15 

Boutin et al. 2013), rather than the structural subunits, demonstrating PPR proteins have acquired a more 16 

complex role in the production of the functional complexes. In the chloroplast both photosystems, PSI 17 

and PSII, have the same number of PPRs interacting with them (Fig. 2A). However, although the targets 18 

were identified from unbiassed mutant libraries, it should be pointed out that many more PPR proteins 19 

remain to be characterised, so this relative proportion may change in the future. 20 

It is not just photosynthetic and respiratory complexes that interact with PPRs in the organelles. Factors 21 

involved with both ribosomal proteins and RNA are prevalent in both organelles. In the chloroplast PPRs 22 

influence other processes such as protein degradation by proteases (Ramos-Vega et al. 2015) or carbon 23 

metabolism with the regulation of rbcL (Luro et al. 2013) or accD involved in fatty acid metabolism 24 

(Du et al. 2017). Involvement of the PPR proteins in mRNA translation is also more prevalent in the 25 

chloroplast (Table 2). Lastly, we found that four chloroplast PPRs: DG1 (Chi et al. 2008), PDM2 (Du et 26 

al. 2017), PDM3 (Zhang et al. 2017) and VAC1 (Tseng et al. 2010), influence overall gene expression 27 

(nuclear encoded polymerase (NEP)- and PEP-related genes) but no such PPRs were found to have a 28 

similar effect in the mitochondria. This could be explained partially by the fact that mitochondria use 29 
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only nucleus-encoded RNA polymerases (review in Börner et al. 2015), whereas chloroplasts have in 1 

addition a plastid-encoded polymerase (PEP) (Kremnev and Strand 2014). This could mean that there 2 

has been a possible co-evolution of PPRs and PEPs in the photosynthetic organisms.  3 

 4 

Conclusions 5 

PPR proteins are multifaceted factors that are important for essential processes in plants, including 6 

photosynthesis, respiration, organelle development and gametogenesis. In our meta-analysis of 7 

characterised A. thaliana PPR proteins we found that there is a significant preference in the involvement 8 

of these proteins for the chloroplast NDH and the mitochondrial NADH dehydrogenase compared to 9 

other organellar complexes probably due to their non-vital role in the cell. Furthermore, editing seems 10 

to be very widespread in both organelles even though there is a preference bias in the mitochondria of 11 

A. thaliana. In some cases, knock-out of the PPR protein has no identifiable effect on the photosynthetic 12 

organism, providing strong evidence for the theory of neutral evolution in this protein family. However, 13 

there are only few studies on cumulative effects of these PPRs. It could be that the “no phenotype” PPR 14 

proteins are part of a much larger network that gradually improves gene translation by editing or 15 

removing certain introns or processing the 5’ or 3’ end of transcripts. Moreover, even in A. thaliana, 16 

only a proportion of the entire PPR complement has been characterised. Therefore, there is now a need 17 

to push for a more comprehensive knowledge of PPR proteins: how they are organised in their own 18 

interaction network, and how they interact with other proteins to achieve their final functionality. Finally, 19 

one question remains unanswered in all these studies: if these PPRs are involved in PTMs in the 20 

organelles, which transcription factors or external cues regulate their expression in turn? Clearly, there 21 

is still much to learn about these enigmatic nucleus-encoded factors, and their orchestration of organelle 22 

function. 23 
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Figure legends 1 

Fig. 1. Representation of the effect of the PPR proteins on two orthologous genes in A. thaliana, the 2 

mitochondrial nad4 and chloroplast ndhD. These two genes are regulated by various PPR proteins the 3 

effects of which are depicted by the key. If the diamonds are coloured, it means that without the PPR 4 

protein, there is a phenotype that can be seen in the mutant strain such aberrant chlorophyll levels or 5 

respiratory impairment. Translation start is indicated by +1. 6 

Fig. 2. Representation of the number of PPR proteins involved with different complexes in the 7 

chloroplast (A) and mitochondria (B). The different complexes are coloured according to the proportion 8 

of the total of PPR proteins involved with their plastid-encoded genes. The values used for colouring 9 

can be found in the tables showing the total number of PPR proteins, which do not add up to 108 because 10 

one PPR can affect multiple complexes. Carbon metabolism in A involves the genes rbcL and accD. 11 
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Supporting information 13 

Additional supporting information may be found in the online version of this article: 14 

 15 

Fig. S1. Schematic representation of the repeats found in TPRs, PPRs and OPRs.  16 

Supplementary Dataset 1. Compilation of the information found in the papers reporting a PPR in 17 

several photosynthetic organisms.  18 
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Table 1. Experimentally characterised PPR proteins in different plants and Chlamydomonas reinhardtii, and their subcellular 

location. The species included in “Other species” are Raphanus sativus, Sorghum bicolor, Hordeum vulgare, Cucumis sativus, 

Brassica napus, Gossypium hirsutum, Brachypodium distachyon and Solanum tuberosum. The majority of which are 

associated with cytoplasm male sterility (CMS). These represent a fraction of the total number of likely PPR proteins encoded 

by each organism. Some PPR proteins are dually localised (Supplementary Dataset 1). 

 Characterised PPR proteins in photosynthetic organisms 

Organism Total Chloroplast Mitochondria Nucleus 

Arabidopsis thaliana 108 41 63 4 

Oryza sativa 25 15 10 1 

Zea mays 24 9 15 0 

Physcomitrella patens 15 5 10 0 

Chlamydomonas reinhardtii 3 3 0 0 

Other plant species 18 2 15 1 

 



Table 2. Knockout of A thaliana PPR proteins enables targets to be established. All organelle encoded processes are affected by at least one PPR protein. In some cases, a single PPR protein targets 

several genes, and/or more than one post-transcriptional modification (PTM).   This accounts for the fact that there are more events than total number of characterised proteins (see Supplementary 

Dataset). Functions of the PPRs have been categorised in mRNA stabilisation, translation, processing, splicing and editing (for detailed explanation of the functions please refer to Stern et al 

2010). The “no phenotype editing” column highlights how many events do not result in a measurable phenotype due to lack of editing; the “no phenotype other PTMs” are all other knockouts 

with no phenotype.  

 
mRNA 

stabilisation 
Processing Splicing Translation Editing 

No phenotype 

editing 

No phenotype 

other PTMs 

Chloroplast        

ATP synthase 0 0 0 3 1 1 0 

Carbon metabolism 0 1 0 0 6 1 1 

Cytochrome b6f 2 5 2 2 0 0 0 

NDH 0 1 3 0 20 7 0 

PEP RNA polymerase 0 1 1 0 5 2 0 

Protease 0 0 0 0 1 0 0 

PSI 0 1 2 0 0 0 0 

PSII 0 0 0 0 2 1 0 

Ribosomes 2 2 8 0 5 3 0 

Total for each PTM 4 11 16 5 40 15 1 

Mitochondria        

ATP synthase 0 0 1 0 2 1 1 

Cytochrome c oxidase 0 4 0 0 11 6 3 

Cytochrome c reductase 0 0 0 0 6 5 3 

NADH dehydrogenase 4 3 15 1 36 18 2 

Ribosomes 0 2 0 0 10 4 0 

Total for each PTM 4 9 16 1 65 34 9 



 








