713 research outputs found

    Magnetic vortex oscillator driven by dc spin-polarized current

    Full text link
    Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the dynamics of nanomagnets. A peculiar consequence of this spin-torque, the ability to induce persistent oscillations of a nanomagnet by applying a dc current, has previously been reported only for spatially uniform nanomagnets. Here we demonstrate that a quintessentially nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized dc current. Comparison to micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz, making these highly compact spin-torque vortex oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure

    In silico assessment of biomedical products: the conundrum of rare but not so rare events in two case studies

    Get PDF
    In silico clinical trials, defined as “The use of individualized computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention,” have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market for biomedical products. We review some of the the literature on this topic, focusing in particular on those applications where the current practice is recognized as inadequate, as for example, the detection of unexpected severe adverse events too rare to be detected in a clinical trial, but still likely enough to be of concern. We then describe with more details two case studies, two successful applications of in silico clinical trial approaches, one relative to the University of Virginia/Padova simulator that the Food and Drug Administration has accepted as possible replacement for animal testing in the preclinical assessment of artificial pancreas technologies, and the second, an investigation of the probability of cardiac lead fracture, where a Bayesian network was used to combine in vivo and in silico observations, suggesting a whole new strategy of in silico-augmented clinical trials, to be used to increase the numerosity where recruitment is impossible, or to explore patients’ phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    High-Contrast Observations in Optical and Infrared Astronomy

    Full text link
    High-contrast observations in optical and infrared astronomy are defined as any observation requiring a technique to reveal a celestial object of interest that is in such close angular proximity to another source brighter by a factor of at least 10^5 that optical effects hinder or prevent the collection of photons directly from the target of observation. This is a relatively new type of observation that enables research on previously obscured parts of the Universe. In particular, it is most applicable to Comparative Planetary Science, a field that directly attacks such questions as "how common are planetary systems? What types of planets exist, and are there planets other than Earth that are capable of supporting life as we know it?" We survey the scientific motivations for high-contrast observations, provide an overview of the techniques currently being used or developed, and discuss some ideas and studies for future prospects.Comment: In press for Annual Review of Astronomy and Astrophysics (Vol. 47). 46 pages, 15 figure

    Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Get PDF
    Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG) motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides (CpG-ODN) are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM) or control ODN without CpG motif. Bronchoalveolar lavage (BAL) fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF)-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered

    The relative effects of upwelling and river flow on the phytoplankton diversity patterns in the ria of A Coruña (NW Spain)

    Get PDF
    Phytoplankton species assemblages in estuaries are connected to those in rivers and marine environments by local hydrodynamics leading to a continuous flow of taxa. This study revealed differential effects of upwelling and river flow on phytoplankton communities observed in 2011 along a salinity gradient from a river reservoir connected to the sea through a ria-marine bay system in A Coruña (NW Spain, 43° 16-21’ N, 8° 16-22’ W). With 130 phytoplankton taxa identified, the assemblages were dominated in general by diatoms, particularly abundant in the bay and in the estuary, but also by chlorophycea and cyanobacteria in the reservoir. Considering the entire seasonal cycle, the local assemblages were mainly characterized by changes in cryptophytes and diatoms, small dinoflagellates and some freshwater chlorophycea. Salinity, nitrate, and organic matter variables, were the main environmental factors related to the changes in the phytoplankton communities through the system, while phosphate and nitrite were also important for local communities in the estuary and the bay, respectively. The corresponding local phytoplankton assemblages showed moderate levels of connectivity. The estuarine community shared a variable number of taxa with the adjacent zones, depending on the relative strength of upwelling (major influence from the bay) and river flow (major influence of the reservoir) but had on average 35% of unique taxa. Consequently, local and zonal diversity patterns varied seasonally and were not simply related to the salinity gradient driven by the river flow.ANILE (CTM2009-08396 and CTM2010-08804-E), FIOME (CTM2011-28792-C02-01-MAR), and MEFIO (CTM2011-28792-C02-02-MAR) of the Plan Nacional de I+D+i (Spain), and RADIALES of the Instituto Español de Oceanografía (IEO, Spain).Versión del editor2,01
    corecore