45 research outputs found

    Algorithms for Coloring Quadtrees

    Full text link
    We describe simple linear time algorithms for coloring the squares of balanced and unbalanced quadtrees so that no two adjacent squares are given the same color. If squares sharing sides are defined as adjacent, we color balanced quadtrees with three colors, and unbalanced quadtrees with four colors; these results are both tight, as some quadtrees require this many colors. If squares sharing corners are defined as adjacent, we color balanced or unbalanced quadtrees with six colors; for some quadtrees, at least five colors are required.Comment: 7 pages, 9 figure

    Comment on "Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices" [arXiv:0705.1045]

    Full text link
    It is shown that a recent article by Z.-D. Zhang [arXiv:0705.1045] is in error and violates well-known theorems.Comment: LaTeX, 3 pages, no figures, submitted to Philosophical Magazine. Expanded versio

    Towards an automated analysis of bacterial peptidoglycan structure.

    Get PDF
    Peptidoglycan (PG) is an essential component of the bacterial cell envelope. This macromolecule consists of glycan chains alternating N-acetylglucosamine and N-acetylmuramic acid, cross-linked by short peptides containing nonstandard amino acids. Structural analysis of PG usually involves enzymatic digestion of glycan strands and separation of disaccharide peptides by reversed-phase HPLC followed by collection of individual peaks for MALDI-TOF and/or tandem mass spectrometry. Here, we report a novel strategy using shotgun proteomics techniques for a systematic and unbiased structural analysis of PG using high-resolution mass spectrometry and automated analysis of HCD and ETD fragmentation spectra with the Byonic software. Using the PG of the nosocomial pathogen Clostridium difficile as a proof of concept, we show that this high-throughput approach allows the identification of all PG monomers and dimers previously described, leaving only disambiguation of 3-3 and 4-3 cross-linking as a manual step. Our analysis confirms previous findings that C. difficile peptidoglycans include mainly deacetylated N-acetylglucosamine residues and 3-3 cross-links. The analysis also revealed a number of low abundance muropeptides with peptide sequences not previously reported. Graphical Abstract The bacterial cell envelope includes plasma membrane, peptidoglycan, and surface layer. Peptidoglycan is unique to bacteria and the target of the most important antibiotics; here it is analyzed by mass spectrometry

    Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken at √s=8 TeV with the ATLAS detector

    Get PDF
    The angular distributions of Drell-Yan charged lepton pairs in the vicinity of the Z-boson mass peak probe the underlying QCD dynamics of Z-boson production. This paper presents a measurement of the complete set of angular coefficients A0−7 describing these distributions in the Z-boson Collins-Soper frame. The data analysed correspond to 20.3 fb−1 of pp collisions at s√=8s=8 TeV, collected by the ATLAS detector at the CERN LHC. The measurements are compared to the most precise fixed-order calculations currently available (O(α2s))(O(αs2)) and with theoretical predictions embedded in Monte Carlo generators. The measurements are precise enough to probe QCD corrections beyond the formal accuracy of these calculations and to provide discrimination between different parton-shower models. A significant deviation from the (O(α2s))(O(αs2)) predictions is observed for A0 − A2. Evidence is found for non-zero A5,6,7, consistent with expectations

    Measurements of the W production cross sections in association with jets with the ATLAS detector

    Get PDF
    This paper presents cross sections for the production of a W boson in association with jets, measured in proton–proton collisions at √s=7 TeV with the ATLAS experiment at the large hadron collider. With an integrated luminosity of 4.6 fb−1, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators

    Definitive characterization of CA 19-9 in resectable pancreatic cancer using a reference set of serum and plasma specimens

    Get PDF
    The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    ANALYZERS WITH TIME VARIATION BASED ON COLOR-CODED SPATIAL MODULATION

    No full text
    A filter arrangement can transmit and/or reflect light emanating from a moving object so that the emanating light has time variation, and the time variation can include information about the object, such as its type. For example, emanating light from segments of a path can be transmitted/reflected through positions of a filter assembly, and the transmission functions of the positions can be sufficiently different that time variation occurs in the emanating light between segments. Or emanating light from a segment can be transmitted/reflected through a filter component in which simpler transmission functions are superimposed, so that time variation occurs in the emanating light in accordance with superposition of two simpler non-uniform transmission functions. Many filter arrangements could be used, e.g. the filter component could include the filter assembly, which can have one of the simpler non-uniform transmission functions. Time-varying waveforms from sensing results can be compared to obtain spectral differences. The filter arrangement, in a practical commercial embodiment, can be manufactured to be disposable, and used in a point-of-care device for use practically anywhere, at low cost, and can also be implemented in an in-line monitoring system

    Escape: A target selection technique using visually-cued gestures

    No full text
    Many mobile devices have touch-sensitive screens that people interact with using fingers or thumbs. However, such interaction is difficult because targets become occluded, and because fingers and thumbs have low input resolution. Recent research has addressed occlusion through visual techniques. However, the poor resolution of finger and thumb selection still limits selection speed. In this paper, we address the selection speed problem through a new target selection technique called Escape. In Escape, targets are selected by gestures cued by icon position and appearance. A user study shows that for targets six to twelve pixels wide, Escape performs at a similar error rate and at least 30 % faster than Shift, an alternative technique, on a similar task. We evaluate Escape’s performance in different circumstances, including different icon sizes, icon overlap, use of color, and gesture direction. We also describe an algorithm that assigns icons to targets, thereby improving Escape’s performance. Author Keywords Target selection, finger gesture, touch screen, mobile devic

    Automatic quality assessment of peptide tandem mass spectra

    No full text
    Motivation: A powerful proteomics methodology couples high-performance liquid chromatography (HPLC) with tandem mass spectrometry and database-search software, such as SEQUEST. Such a set-up, however, produces a large number of spectra, many of which are of too poor quality to be useful. Hence a filter that eliminates poor spectra before the database search can significantly improve throughput and robustness. Moreover, spectra judged to be of high quality, but that cannot be identified by database search, are prime candidates for still more computationally intensive methods, such as de novo sequencing or wider database searches including post-translational modifications. Results: We report on two different approaches to assessing spectral quality prior to identification: binary classification, which predicts whether or not SEQUEST will be able to make an identification, and statistical regression, which predicts a more universal quality metric involving the number of b- and y-ion peaks. The best of our binary classifiers can eliminate over 75 % of the unidentifiable spectra while losing only 10% of the identifiable spectra. Statistical regression can pick out spectra of modified peptides that can be identified by a de novo program but not by SEQUEST. In a section of independent interest, we discuss intensity normalization of mass spectra. Contact
    corecore