230 research outputs found

    Kevin Grant, ed. The Art of David Dabydeen.

    Get PDF

    Book Review: Folk Furniture of Canada\u27s Doukhobors, Hutterites, Mennonites and Ukrainians

    Get PDF
    Folk Furniture makes a fine coffee-table book, with its oversize format and more than one hundred gorgeous color photographs by James A. Chambers. Leafing through it is a visual feast, with otherwise humble pieces of furniture dignified by dramatic lighting that discloses the texture, line, and form of historic everyday household items. But the book is an important contribution to material cultural studies, since it not only places furniture in its cultural context but also reads furniture like a text to discover how it expresses the history, psychology, and ideology of the people who made and used it

    Pennsylvania Folklife Vol. 39, No. 2

    Get PDF
    • The Recovery of the Feminine in an Early American Pietist Community: The Interpretive Challenge of the Theology of Conrad Beissel • A Religious and Geographical History of the Shakers, 1747-1988 • Indiana Amish Family Records • Eel for Christmas: An Italian Tradition • Recollections of Ninety-Two Years • Those Old-Time Children\u27s Days • Aldes un Neies (Old and New)https://digitalcommons.ursinus.edu/pafolklifemag/1126/thumbnail.jp

    Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants

    Full text link
    [EN] In vitro shoot regeneration can efficiently contribute to the improvement of recalcitrant Cannabis sativa L. We aimed at developing a highly efficient protocol for in vitro direct regeneration of C. sativa plants from different explants (cotyledon, hypocotyl, and true leaf) from seedlings of monoecious C. sativa short-day varieties Ferimon, Felina32, Fedora17, and USO31, together with dioecious neutral-day variety Finola. Ten regeneration media, including already published protocols, and self-designed combinations of plant growth regulators were tested. The developmental morphology since germination of seeds to the development of rooted plantlets was followed. Additionally, the ploidy level of explants and in vitro regenerants was analyzed. We concluded that hypocotyl is the best explant for in vitro direct regeneration of C. sativa plants with 49.45% of responding explants, while cotyledon and true leaf had a poor response with, respectively, 4.70 and 0.42% of explants developing plantlets. In terms of shoot regeneration, we found significant differences among the culture media evaluated and the varieties studied. Overall, the best regeneration media were ZEARIB 2.0 (mg/L) and ZEARIB 1.0 (mg/L) C NAA 0.02 (mg/L) with 66.67% of responding hypocotyls. Amazingly, hypocotyls cultured in medium without plant growth regulators showed an excellent response (61.54% of responding hypocotyls) and spontaneous rooting of regenerants (17.94%). In vitro regenerated plants were acclimatized just 6 weeks after culture initiation. The developmental morphology study suggests that regenerated shoots originate from pericycle cells adjacent to xylem poles. Polysomaty was detected in hypocotyls and cotyledons of all varieties studied, and diploid (>80%) and mixoploid (with diploid and tetraploid cells) plants were regenerated. Our protocol allows a high shoot organogenesis efficiency in different C. sativa varieties. The fact that a significant percentage of plants are mixoploid may provide an alternative way to develop polyploids in C. sativa. Our results show that direct in vitro regeneration may make a significant contribution to the development of improved C. sativa materials for medical applications.Galán-Ávila, A.; García-Fortea, E.; Prohens Tomás, J.; Herraiz García, FJ. (2020). Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00645S11511Adelberg, J. W., Rhodes, B. B., & Skorupska, H. T. (1993). GENERATING TETRAPLOID MELONS IN TISSUE CULTURE. Acta Horticulturae, (336), 373-380. doi:10.17660/actahortic.1993.336.49Andre, C. M., Hausman, J.-F., & Guerriero, G. (2016). Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00019Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., … Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grownin vitro. The Plant Journal, 57(4), 626-644. doi:10.1111/j.1365-313x.2008.03715.xBeck, E. H. (1996). Regulation of shoot/root ratio by cytokinins from roots inUrtica dioica: Opinion. Plant and Soil, 185(1), 1-12. doi:10.1007/bf02257560Beeckman, T., & De Smet, I. (2014). Pericycle. Current Biology, 24(10), R378-R379. doi:10.1016/j.cub.2014.03.031Behr, M., Legay, S., Žižková, E., Motyka, V., Dobrev, P. I., Hausman, J.-F., … Guerriero, G. (2016). Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01733Behr, M., Sergeant, K., Leclercq, C. C., Planchon, S., Guignard, C., Lenouvel, A., … Guerriero, G. (2018). Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biology, 18(1). doi:10.1186/s12870-017-1213-1Breslavetz, L. (1932). Polyploide Mitosen bei Cannabis sativa L. II. Planta, 17(3), 644-649. doi:10.1007/bf01909774Bubner, B., Gase, K., Berger, B., Link, D., & Baldwin, I. T. (2006). Occurrence of tetraploidy in Nicotiana attenuata plants after Agrobacterium-mediated transformation is genotype specific but independent of polysomaty of explant tissue. Plant Cell Reports, 25(7), 668-675. doi:10.1007/s00299-005-0111-4Cascio, M. G., Pertwee, R. G., & Marini, P. (2017). The Pharmacology and Therapeutic Potential of Plant Cannabinoids. Cannabis sativa L. - Botany and Biotechnology, 207-225. doi:10.1007/978-3-319-54564-6_9Chaohua, C., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, C., … Jianguang, S. (2016). A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products, 83, 61-65. doi:10.1016/j.indcrop.2015.12.035Colijn-Hooymans, C. M., Hakkert, J. C., Jansen, J., & Custers, J. B. M. (1994). Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell, Tissue and Organ Culture, 39(3), 211-217. doi:10.1007/bf00035972D’Amato, F. (1952). Polyploidy in the Differentiation and Function of Tissues and Cells in Plants. Caryologia, 4(3), 311-358. doi:10.1080/00087114.1952.10797544D’Amato, F. (1964). Endopolyploidy as a Factor in Plant Tissue Development. Caryologia, 17(1), 41-52. doi:10.1080/00087114.1964.10796115DETREZ, C., TETU, T., SANGWAN, R. S., & SANGWAN-NORREEL, B. S. (1988). Direct Organogenesis from Petiole and Thin Cell Layer Explants in Sugar Beet CulturedIn Vitro. Journal of Experimental Botany, 39(7), 917-926. doi:10.1093/jxb/39.7.917Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241Ervin, C. D. (1939). Polysomaty in Cucumis Melo. Proceedings of the National Academy of Sciences, 25(7), 335-338. doi:10.1073/pnas.25.7.335Ervin, C. D. (1941). A STUDY OF POLYSOMATY IN CUCUMIS MELO. American Journal of Botany, 28(2), 113-124. doi:10.1002/j.1537-2197.1941.tb07950.xEvans, D. A., & Bravo, J. E. (1986). Phenotypic and Genotypic Stability of Tissue Cultured Plants. Current Plant Science and Biotechnology in Agriculture, 73-94. doi:10.1007/978-94-009-4444-2_6Ezura, H., Nishimiya, S., & Kasumi, M. (1993). Efficient regeneration of plants independent of exogeneous growth regulators in bell pepper (Capsicum annumm L.). Plant Cell Reports, 12(12). doi:10.1007/bf00233418Feeney, M., & Punja, Z. K. (2003). Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cellular & Developmental Biology - Plant, 39(6), 578-585. doi:10.1079/ivp2003454Feeney, M., & Punja, Z. K. (2014). Hemp (Cannabis sativa L.). Agrobacterium Protocols, 319-329. doi:10.1007/978-1-4939-1658-0_25Feeney, M., & Punja, Z. K. (2017). The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development. Cannabis sativa L. - Botany and Biotechnology, 343-363. doi:10.1007/978-3-319-54564-6_16Cardoso-Furlan, F., Gavilan, N. H., Zichner-Zorz, A., Oliveira, L. S. de, Konzen, E. R., & Ebling-Brondani, G. (2018). Active chlorine and charcoal affect the in vitro culture of Bambusa vulgaris. Bosque (Valdivia), 39(1), 61-70. doi:10.4067/s0717-92002018000100061García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-yIannicelli, J., Guariniello, J., Tossi, V. E., Regalado, J. J., Di Ciaccio, L., van Baren, C. M., … Escandón, A. S. (2020). The «polyploid effect» in the breeding of aromatic and medicinal species. Scientia Horticulturae, 260, 108854. doi:10.1016/j.scienta.2019.108854Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713LaRue, C. D. (1933). Regeneration in Mutilated Seedlings. Proceedings of the National Academy of Sciences, 19(1), 53-63. doi:10.1073/pnas.19.1.53Lata, H., Chandra, S., Khan, I., & ElSohly, M. A. (2008). Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cellular & Developmental Biology - Plant, 45(1), 12-19. doi:10.1007/s11627-008-9167-5Lata, H., Chandra, S., Khan, I., & ElSohly, M. (2010). High Frequency Plant Regeneration from Leaf Derived Callus of HighΔ9-Tetrahydrocannabinol YieldingCannabis sativaL. Planta Medica, 76(14), 1629-1633. doi:10.1055/s-0030-1249773Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2016). In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance. Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition, 275-288. doi:10.1007/978-1-4939-3332-7_19Lata, H., Chandra, S., Techen, N., Khan, I. A., & ElSohly, M. A. (2016). In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18-26. doi:10.1016/j.jarmap.2015.12.001Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Micropropagation of Cannabis sativa L.—An Update. Cannabis sativa L. - Botany and Biotechnology, 285-297. doi:10.1007/978-3-319-54564-6_13Ranalli, P. (1999). Advances in Hemp Research. doi:10.1201/9781498705820Mansouri, H., & Bagheri, M. (2017). Induction of Polyploidy and Its Effect on Cannabis sativa L. Cannabis sativa L. - Botany and Biotechnology, 365-383. doi:10.1007/978-3-319-54564-6_17Mhatre, M., Bapat, V. A., & Rao, P. S. (1985). Regeneration of plants from the culture of leaves and axillary buds in mulberry (Morus indica L.). Plant Cell Reports, 4(2), 78-80. doi:10.1007/bf00269211Miller, R. H. (1959). MORPHOLOGY OF HUMULUS LUPULUS. II. SECONDARY GROWTH IN THE ROOT AND SEEDLING VASCULARIZATION. American Journal of Botany, 46(4), 269-277. doi:10.1002/j.1537-2197.1959.tb07012.xMinocha, S. C. (1987). Plant Growth Regulators and Morphogenesis in Cell and Tissue Culture of Forest Trees. Forestry Sciences, 50-66. doi:10.1007/978-94-017-0994-1_4Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2). doi:10.6001/zemesukiomokslai.v24i2.3496Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xParsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the Genetic Improvement of Cannabis sativa. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00476Ramírez-Mosqueda, M. A., & Iglesias-Andreu, L. G. (2015). Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell, Tissue and Organ Culture (PCTOC), 123(3), 657-664. doi:10.1007/s11240-015-0868-2RAMSAY, G., & KUMAR, A. (1990). Transformation ofVicia fabaCotyledon and Stem Tissues7Agrobacterium rhizogenes: Infectivity and Cytological Studies. Journal of Experimental Botany, 41(7), 841-847. doi:10.1093/jxb/41.7.841Recupero, G. R., Russo, G., & Recupero, S. (2005). New Promising Citrus Triploid Hybrids Selected from Crosses between Monoembryonic Diploid Female and Tetraploid Male Parents. HortScience, 40(3), 516-520. doi:10.21273/hortsci.40.3.516Ren, Y., Bang, H., Gould, J., Rathore, K. S., Patil, B. S., & Crosby, K. M. (2012). Shoot regeneration and ploidy variation in tissue culture of honeydew melon (Cucumis melo L. inodorus). In Vitro Cellular & Developmental Biology - Plant, 49(2), 223-229. doi:10.1007/s11627-012-9482-8RICHEZ-DUMANOIS, C., BRAUT-BOUCHER, F., COSSON, L., & PARIS, M. (1986). Multiplication végétativein vitrodu chanvre (Cannabis sativa L.). Application à la conserva- tion des clones sélectionnés. Agronomie, 6(5), 487-495. doi:10.1051/agro:19860510Sairam Reddy, P., Rodrigues, R., & Rajasekharan, R. (2001). Plant Cell, Tissue and Organ Culture, 66(3), 183-188. doi:10.1023/a:1010697813852Silvarolla, M. B., Mazzafera, P., Lima, M. M. A. de, Medina Filho, H. P., & Fazuoli, L. C. (1999). Ploidy level and caffeine content in leaves of Coffea. Scientia Agricola, 56(3), 661-663. doi:10.1590/s0103-90161999000300021Sliwinska, E., & Lukaszewska, E. (2005). Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant Science, 168(4), 1067-1074. doi:10.1016/j.plantsci.2004.12.003Smýkalová, I., Vrbová, M., Cvečková, M., Plačková, L., Žukauskaitė, A., Zatloukal, M., … Griga, M. (2019). The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell, Tissue and Organ Culture (PCTOC), 139(2), 381-394. doi:10.1007/s11240-019-01693-5Su, Y.-H., Liu, Y.-B., & Zhang, X.-S. (2011). Auxin–Cytokinin Interaction Regulates Meristem Development. Molecular Plant, 4(4), 616-625. doi:10.1093/mp/ssr007Tanimoto, S., & Harada, H. (1984). Roles of Auxin and Cytokinin in Organogenesis in Torenia Stem Segments Cultured in vitro. Journal of Plant Physiology, 115(1), 11-18. doi:10.1016/s0176-1617(84)80046-2Urits, I., Borchart, M., Hasegawa, M., Kochanski, J., Orhurhu, V., & Viswanath, O. (2019). An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain and Therapy, 8(1), 41-51. doi:10.1007/s40122-019-0114-4Van den Bulk, R. W., Löffler, H. J. M., Lindhout, W. H., & Koornneef, M. (1990). Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theoretical and Applied Genetics, 80(6), 817-825. doi:10.1007/bf00224199Van Hieu, P. (2019). Polyploid Gene Expression and Regulation in Polysomic Polyploids. American Journal of Plant Sciences, 10(08), 1409-1443. doi:10.4236/ajps.2019.108101Vieira, L. M., Rocha, D. I., Taquetti, M. F., da Silva, L. C., de Campos, J. M. S., Viccini, L. F., & Otoni, W. C. (2014). In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cellular & Developmental Biology - Plant, 50(6), 738-745. doi:10.1007/s11627-014-9650-0Wahby, I., Caba, J. M., & Ligero, F. (2013). Agrobacteriuminfection of hemp (Cannabis sativaL.): establishment of hairy root cultures. Journal of Plant Interactions, 8(4), 312-320. doi:10.1080/17429145.2012.746399Wahby, I., Caba, J. M., & Ligero, F. (2017). Hairy Root Culture as a Biotechnological Tool in C. sativa. Cannabis sativa L. - Botany and Biotechnology, 299-317. doi:10.1007/978-3-319-54564-6_14Wielgus, K., Luwanska, A., Lassocinski, W., & Kaczmarek, Z. (2008). Estimation ofCannabis sativaL. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. Journal of Natural Fibers, 5(3), 199-207. doi:10.1080/1544047080197604

    Mobile Air Quality Studies (MAQS) - an international project

    Get PDF
    Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"- exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including including NO2, SO2, nanoparticles, and ozone

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Challenge Demcare: management of challenging behaviour in dementia at home and in care homes:Development, evaluation and implementation of an online individualised intervention for care homes; and a cohort study of specialist community mental health care for families

    Get PDF
    Background: Dementia with challenging behaviour (CB) causes significant distress for caregivers and the person with dementia. It is associated with breakdown of care at home and disruption in care homes. Challenge Demcare aimed to assist care home staff and mental health practitioners who support families at home to respond effectively to CB. Objectives: To study the management of CB in care homes (ResCare) and in family care (FamCare). Following a conceptual overview, two systematic reviews and scrutiny of clinical guidelines, we (1) developed and tested a computerised intervention; (2) conducted a cluster randomised trial (CRT) of the intervention for dementia with CB in care homes; (3) conducted a process evaluation of implementation of the intervention; and (4) conducted a longitudinal observational cohort study of the management of people with dementia with CB living at home, and their carers. Review methods: Cochrane review of randomised controlled trials; systematic meta-ethnographic review of quantitative and qualitative studies. Design: ResCare – survey, CRT, process evaluation and stakeholder consultations. FamCare – survey, longitudinal cohort study, participatory development design process and stakeholder consultations. Comparative examination of baseline levels of CB in the ResCare trial and the FamCare study participants. Settings: ResCare – 63 care homes in Yorkshire. FamCare – 33 community mental health teams for older people (CMHTsOP) in seven NHS organisations across England. Participants: ResCare – 2386 residents and 861 staff screened for eligibility; 555 residents with dementia and CB; 277 ‘other’ residents; 632 care staff; and 92 staff champions. FamCare – every new referral (n = 5360) reviewed for eligibility; 157 patients with dementia and CB, with their carer; and 26 mental health practitioners. Stakeholder consultations – initial workshops with 83 practitioners and managers from participating organisations; and 70 additional stakeholders using eight group discussions and nine individual interviews. Intervention: An online application for case-specific action plans to reduce CB in dementia, consisting of e-learning and bespoke decision support care home and family care e-tools. Main outcome measures: ResCare – survey with the Challenging Behaviour Scale; measurement of CB with the Neuropsychiatric Inventory (NPI) and medications taken from prescriptions; implementation with thematic views from participants and stakeholders. FamCare – case identification from all referrals to CMHTsOP; measurement of CB with the Revised Memory and Behaviour Problems Checklist and NPI; medications taken from prescriptions; and thematic views from stakeholders. Costs of care calculated for both settings. Comparison of the ResCare trial and FamCare study participants used the NPI, Clinical Dementia Rating and prescribed medications. Results: ResCare – training with group discussion and decision support for individualised interventions did not change practice enough to have an impact on CB in dementia. Worksite e-learning opportunities were not readily taken up by care home staff. Smaller homes with a less hierarchical management appear more ready than others to engage in innovation. FamCare – home-dwelling people with dementia and CB are referred to specialist NHS services, but treatment over 6 months, averaging nine contacts per family, had no overall impact on CB. Over 60% of people with CB had mild dementia. Families bear the majority of the care costs of dementia with CB. A care gap in the delivery of post-diagnostic help for families supporting relatives with dementia and significant CB at home has emerged. Higher levels of CB were recorded in family settings; and prescribing practices were suboptimal in both care home and family settings. Limitations: Functionality of the software was unreliable, resulting in delays. This compromised the feasibility studies and undermined delivery of the intervention in care homes. A planned FamCare CRT could not proceed because of insufficient referrals. Conclusions: A Cochrane review of individualised functional analysis-based interventions suggests that these show promise, although delivery requires a trained dementia care workforce. Like many staff training interventions, our interactive e-learning course was well received by staff when delivered in groups with facilitated discussion. Our e-learning and decision support e-tool intervention in care homes, in its current form, without ongoing review of implementation of recommended action plans, is not effective at reducing CB when compared with usual care. This may also be true for staff training in general. A shift in priorities from early diagnosis to early recognition of dementia with clinically significant CB could bridge the emerging gap and inequities of care to families. Formalised service improvements in the NHS, to co-ordinate such interventions, may stimulate better opportunities for practice models and pathways. Separate services for care homes and family care may enhance the efficiency of delivery and the quality of research on implementation into routine care. Future work: There is scope for extending functional analysis-based interventions with communication and interaction training for carers. Our clinical workbooks, video material of real-life episodes of CB and process evaluation tool resources require further testing. There is an urgent need for evaluation of interventions for home-dwelling people with dementia with clinically significant CB, delivered by trained dementia practitioners. Realist evaluation designs may illuminate how the intervention might work, and for whom, within varying service contexts

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF
    corecore