10 research outputs found

    The role of single-cell genomics in human genetics

    Get PDF
    Single-cell sequencing is a powerful approach that can detect genetic alterations and their phenotypic consequences in the context of human development, with cellular resolution. Humans start out as single-cell zygotes and undergo fission and differentiation to develop into multicellular organisms. Before fertilisation and during development, the cellular genome acquires hundreds of mutations that propagate down the cell lineage. Whether germline or somatic in nature, some of these mutations may have significant genotypic impact and lead to diseased cellular phenotypes, either systemically or confined to a tissue. Single-cell sequencing enables the detection and monitoring of the genotype and the consequent molecular phenotypes at a cellular resolution. It offers powerful tools to compare the cellular lineage between 'normal' and 'diseased' conditions and to establish genotype-phenotype relationships. By preserving cellular heterogeneity, single-cell sequencing, unlike bulk-sequencing, allows the detection of even small, diseased subpopulations of cells within an otherwise normal tissue. Indeed, the characterisation of biopsies with cellular resolution can provide a mechanistic view of the disease. While single-cell approaches are currently used mainly in basic research, it can be expected that applications of these technologies in the clinic may aid the detection, diagnosis and eventually the treatment of rare genetic diseases as well as cancer. This review article provides an overview of the single-cell sequencing technologies in the context of human genetics, with an aim to empower clinicians to understand and interpret the single-cell sequencing data and analyses. We discuss the state-of-the-art experimental and analytical workflows and highlight current challenges/limitations

    Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state.

    Get PDF
    Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease etiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease employing the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of postmortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabeling of the same tissues. Moreover, we analyzed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in IPD midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signaling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease-microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB, and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signaling and immunomodulatory treatments in Parkinson's disease

    Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis

    No full text
    Purpose: We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. Methods: Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. Results: We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. Conclusion: In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome. (C) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics.US National Institute of Neurological Disorders and Stroke [R35 NS 105078]; US National Human Genome Research Institute (NHGRI); National Heart, Lung, and Blood Institute [UM1 HG006542, R01 GM106373, U01 HG011758, 512848]; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) of the National Institutes of Health [P50HD103555]; International Rett Syndrome Foundation (IRSF) [3701-1]; NHGRI [K08 HG008986]; German Research Council (DFG) [KO 2891/9-1]; BIH Center for Regenerative Therapies (BCRT)We are grateful to the families for their participation in this study. We thank Aris. N. Economides and Manuel Holtgrewe for their valuable suggestions and support. J.R.L. laboratory is supported by the US National Institute of Neurological Disorders and Stroke (R35 NS 105078) and in part by the US National Human Genome Research Institute (NHGRI) and National Heart, Lung, and Blood Institute to the Baylor-Hopkins Center for Mendelian Genomics (BHCMG; UM1 HG006542), the National Institute of General Medical Sciences (NIGMS; R01 GM106373), the NHGRI Baylor College of Medicine Genomics Research Elucidates Genetics of Rare Diseases (BCM-GREGoR; U01 HG011758), the Muscular Dystrophy Association (512848), and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) of the National Institutes of Health under award number P50HD103555 for use of the Clinical Translation Core facilities. D.P. is supported by International Rett Syndrome Foundation (IRSF; grant #3701-1). J.E.P. was supported by NHGRI K08 HG008986. U.K. obtained funding from the German Research Council (DFG)(KO 2891/9-1) and the BIH Center for Regenerative Therapies (BCRT)(cross-field project GenoPro)

    Non-Random Pattern of Integration for Epstein-Barr Virus with Preference for Gene-Poor Genomic Chromosomal Regions into the Genome of Burkitt Lymphoma Cell Lines

    No full text
    Background: Epstein-Barr virus (EBV) is an oncogenic virus found in about 95% of endemic Burkitt lymphoma (BL) cases. In latently infected cells, EBV DNA is mostly maintained in episomal form, but it can also be integrated into the host genome, or both forms can coexist in the infected cells. Methods: In this study, we mapped the chromosomal integration sites of EBV (EBV-IS) into the genome of 21 EBV+ BL cell lines (BL-CL) using metaphase fluorescence in situ hybridization (FISH). The data were used to investigate the EBV-IS distribution pattern in BL-CL, its relation to the genome instability, and to assess its association to common fragile sites and episomes. Results: We detected a total of 459 EBV-IS integrated into multiple genome localizations with a preference for gene-poor chromosomes. We did not observe any preferential affinity of EBV to integrate into common and rare fragile sites or enrichment of EBV-IS at the chromosomal breakpoints of the BL-CL analyzed here, as other DNA viruses do. Conclusions: We identified a non-random integration pattern into 13 cytobands, of which eight overlap with the EBV-IS in EBV-transformed lymphoblastoid cell lines and with a preference for gene- and CpGs-poor G-positive cytobands. Moreover, it has been demonstrated that the episomal form of EBV interacts in a non-random manner with gene-poor and AT-rich regions in EBV+ cell lines, which may explain the observed affinity for G-positive cytobands in the EBV integration process. Our results provide new insights into the patterns of EBV integration in BL-CL at the chromosomal level, revealing an unexpected connection between the episomal and integrated forms of EBV

    Ion conduction and redistribution at grain boundaries in oxide systems

    No full text
    corecore