514 research outputs found

    A Derivation of Three-Dimensional Inertial Transformations

    Get PDF
    The derivation of the transformations between inertial frames made by Mansouri and Sexl is generalised to three dimensions for an arbitrary direction of the velocity. Assuming lenght contraction and time dilation to have their relativistic values, a set of transformations kinematically equivalent to special relativity is obtained. The ``clock hypothesis'' allows the derivation to be extended to accelerated systems. A theory of inertial transformations maintaining an absolute simultaneity is shown to be the only one logically consistent with accelerated movements. Algebraic properties of these transformations are discussed. Keywords: special relativity, synchronization, one-way velocity of light, ether, clock hypothesis.Comment: 16 pages (A5), Latex, one figure, to be published in Found. Phys. Lett. (1997

    Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics

    Full text link
    In this work we outline the two most commonly used test theories (RMS and SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop the general framework of applying these test theories to resonator experiments with an emphasis on rotating experiments in the laboratory. We compare the inherent sensitivity factors of common experiments and propose some new configurations. Finally we apply the test theories to the rotating cryogenic experiment at the University of Western Australia, which recently set new limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications, updated list of reference

    Slepton Flavor Nonuniversality, the Muon EDM and its Proposed sensitive Search at Brookhaven

    Full text link
    We analyze the electric dipole moment of the electron (ded_e), of the neutron (dnd_n) and of the muon (dμd_{\mu}) using the cancellation mechanism in the presence of nonuniversalities of the soft breaking parameters. It is shown that the nonuniversalities in the slepton sector produce a strong violation of the scaling relation dμ/demμ/med_{\mu}/d_e\simeq m_{\mu}/m_e in the cancellation region. An analysis of de,dnd_e, d_n and dμd_{\mu} under the constraints of the current experimental limits on ded_e and dnd_n and under the constraints of the recent Brookhaven result on gμ2g_{\mu}-2 shows that in the non-scaling region dμd_{\mu} can be as large as (1024102310^{-24}-10^{-23})ecm and thus within reach of the recently proposed Brookhaven experiment for a sensitive search for dμd_{\mu} at the level of 102410^{-24} ecm.Comment: 24 pages, Latex, including 5 figures with additional reference

    Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    Full text link
    In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain 3 dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation n_S-1=n_T between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations and distinguish between different dynamical models of cosmological vacuum dark energy.Comment: 73 pages, 9 figures. Final Version published in JCAP. New Section 4 added on linearized scalar gravitational potentials; New Section 8 added on gravitational wave tensor perturbations and relation of spectral indices n_T = n_S -1; Table of Contents added; Eqs. (3.14) and (3.15) added to clarify relationship of bispectrum plotted to CMB measurements; Some other minor modification

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    Measurement of single-spin azimuthal asymmetries in semi-inclusive electroproduction of pions and kaons on a longitudinally polarised deuterium target

    Get PDF
    Single-spin asymmetries have been measured for semi-inclusive electroproduction of π+\pi^+, π\pi^-, π0\pi^0 and K+K^+ mesons in deep-inelastic scattering off a longitudinally polarised deuterium target. The asymmetries appear in the distribution of the hadrons in the azimuthal angle ϕ\phi around the virtual photon direction, relative to the lepton scattering plane. The corresponding analysing powers in the sinϕ\sin \phi moment of the cross section are 0.012±0.002(stat.)±0.002(syst.)0.012 \pm 0.002 {(stat.)} \pm 0.002 {(syst.)} for π+\pi^+, 0.006±0.003(stat.)±0.002(syst.)0.006 \pm 0.003 {(stat.)} \pm 0.002 {(syst.)} for π\pi^-, 0.021±0.005(stat.)±0.003(syst.)0.021 \pm 0.005 {(stat.)} \pm 0.003 {(syst.)} for π0\pi^0 and 0.013±0.006(stat.)±0.003(syst.)0.013 \pm 0.006 {(stat.)} \pm 0.003 {(syst.)} for K+K^+. The sin2ϕ\sin 2\phi moments are compatible with zero for all particles.Comment: Revised version shortened 9 pages, 3 tables, 7 figure

    First observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0D0K0)B(Bˉ0D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0D0K0)B(Bˉ0D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore