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Abstract

Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely
and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case.
This contribution is significantly positive for* mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by #RMES The subleading-twist contribution far— mesons is found to be small.
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PACS 13.60.-r; 13.88.+e; 14.20.Dh; 14.65.-q

Single-spin asymmetries in the distribution of lepto-produced hadrons in the azimuthal angle around the virtual
photon direction are a valuable tool for the exploration of transverse spin and momentum degrees of freedom in
nucleon structure. Whereas two out of the three fundamental quark distributions, the unpolarized quark density
and the helicity density, can be accessed in inclusive measurements, this is not true for the remaining and so far
unmeasured transversity distribution functidr-3]. Since transversity is chiral-odd and since hard interactions
conserve chirality, it can only be probed by a process involving some additional chiral-odd object. Single-spin
asymmetries in semi-inclusive deep-inelastic scattering (SIDIS), e.g., involving the chiral-odd Collins fragmenta-
tion function[4], could be the required quark “polarimeter” to access transversity. This has been a main motivation
to look for azimuthal single-spin asymmetries. Such asymmetries have been observed in SIDIS with unpolarized
beams and with targets polarized both longitudinally and transversely with respect to the beam dise&jon
Asymmetries have also been observed with polarized beams and unpolarized n{lebhs The asymmetry
for a transversely polarized target can be interpreted in terms of the transversity distribution function, convoluted
with the Collins fragmentation function, as well as in terms of the SiJ&E2$ function, which appears with the
ordinary unpolarized fragmentation function. In the case of targets that are polarized longitudinally with respect
to the incoming beam direction, the interpretation is more complex. In fact, the asymmetry for a target polar-
ized along the virtual photon direction contains various contributions from subleading-twist quark distribution
and fragmentation functions. These contributions have—for dynamics reasons—an addjt@raldpression
compared to the ordinary/D* suppression of the Mott cross section. When the polarization is along the beam
direction, the small but non-vanishing component of the nuclear spin transverse to the photon direction, although
1/0 suppressed for kinematical reasons, also contributes to the measured asymmetry. This feature has been ex
ploited in several estimat¢&3—19]for the hitherto unknown transversity distribution and Collins fragmentation
functions. However, some or all of the above-mentioned subleading-twist terms have been neglected in all these
estimates.

In this Letter the recently measured asymmetries on a transversely polarized hydrogdBjtargetsed to elim-
inate the contribution due to the transverse spin component from the measured asymmetries on a longitudinally
polarized hydrogen targgi], thereby allowing, for the first time, the extraction of the purely subleading-twist con-
tribution. Knowledge of this subleading contribution is essential to any extraction of information on the transversity
distribution or Collins fragmentation function from data with longitudinal target polarization.

Whenever the target is polarized with respect to the incoming beam direction the measured asymmetries contain
contributions from both the transverse and longitudinal polarization components with respect to the virtual photon
direction. Throughout this Letter asymmetries and their azimuthal moments will carry one of the following super-
scripts for distinction: “q” when the reference axis is the photon direction and “I” when it is the lepton beam. They
will be called photon-axis or lepton-axis asymmetries/moments, respectively. Asymmetries and moments will also
carry two-letter subscripts denoting the polarization of beam and target. For the definition of azimuthal angles,
asymmetries, and azimuthal moments thereoffiieato Conventions [20] will be used.

The size of the component of the nucleon spin vector that is transverse to the virtual photon direction depends
oné,«, the polar angle between the incoming beam direction and the virtual photon directidigse Hence it
strongly depends on the event kinematics. AR Eskinematics sitd,« can be as large as 15%. In the configura-
tion shown inFig. 1, where in the lab frame the target spin vector is opposite to the incoming beam direction, the
transverse spin component lies in the lepton scattering plane. Theggfatee azimuthal angle of the target spin
relative to the scattering plane, is equakto

The azimuthal moments of the distribution of hadrons around the virtual-photon direction can be separated
into contributions from the longitudinal and transverse components of the target polarization with respect to the
virtual photon direction. For the case of the longitudinal lepton-axis momsﬂ'mb)'UL, the contributions from the
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Fig. 1. The definitions of the azimuthal angpeof the hadron production plane, relative to the plane containing the momengiiijnof the
incident (scattered) lepton, the polar angje between the virtual photon and the incoming lepton directions, and of the transverse component
S| of the target spir§ with respect to the photon directign=1 —1'.

transverse component are the Sivers and Collins monigintg — ¢5))?,T and(sin(¢ + ¢5))?,T. Since in this case

¢s = , both moments contribute to the girFourier component of the longitudinal lepton-axis asymmetry with a
minus sign. In case of a transversely polarized target contributions arise from the dominating transverse and from
the small but non-vanishing longitudinal component. Both the measured lepton-axis mdsie(tst ¢S)>IUT
and(sin(¢ — ¢5))'UT contain contributions fron(\sind;)?]L. The lepton-axis moments are related to the photon-axis
moments via the equation

(sing)};, COSfy+  —Sinf,«  —sind, (sing)p,
(sin(g — )y | = 3sin6y+  cosd,« 0 (sin(@ — o)) 7 |- @)
(Sin(g + ¢))y 7 Lsing,- 0 COS,+ (Sin(@ + ¢5)) 7 7

which is valid up to corrections of order §iﬁ},* [21].

The complete analysis up to subleading-twist and leading ordegraf longitudinal single-spin asymmetries in
semi-inclusive DIS was presented in RR2], completing previous work of Reff23,24] Neglecting quark mass
effects, the first term of the photon-axis moments on the right-hand side ¢1Hg.

Pyikr (M 1 1N, Puipr (Ml 5 1
@-nVI—y MI[ g (5i81.G +xh Hi) + =P (Giha H — x /i D1)]

2
1—y—|—% o D1 ()

(sing) ;= —

The shorthand notatiof[W f D] is used here for the convolution integral appearing in the SIDIS cross section
when quark transverse momenta are included, i.e.,

p
10V D1= [ Py i hy 89 (pr = T~k )W (x, )P 23)) @

where Pj, is the transverse momentum of the detected hadpen(kr) is the intrinsic quark transverse mo-
mentum in the generic distribution functiof (fragmentation functiorD), and W is a weight that depends on

the involved distribution and fragmentation functions. The massgsM, and M, are the quark, nucleon and
hadron masses and y, andz are the usual semi-inclusive DIS Lorentz invariants. The quark charge squared
weighted sum over the various (anti)quark flavors and the dependenc(&))rp% (k%), andQ? of the distribution
(fragmentation) functions have been omitted in &).



18 HERMES Collaboration / Physics Letters B 622 (2005) 1422

Since the extraction of the subleading-twist te(ls‘rnqs)?,L is the main result of this work, its components are
described briefly. The asymmetry arises from the interference of the scattering amplitudes of a longitudinal and
transverse photon. This leads to the specific dependence of the numerator on the yafillidems in the numer-
ator of Eq.(2) involve either combinations of subleading-twist distribution functions, (le) with leading-twist
fragmentation functions or of leading-twist distribution functions in conjunction with subleading-twist fragmenta-
tion functions G+, H). One should note that it is not possible to give a simple probabilistic interpretation to the
subleading-twist functions. The terms containing andhﬁ have been studied in some detail in R¢ist,15],
making use of Wandzura—Wilczek approximations, and of Lorentz covariance relations. (The latter have been
proven to be not rigorous in R¢R5].) Note that the functionhfL appeatrs also in the sigZ-ourier component of
the longitudinal single-spin asymmeti33]. Recent preliminary results oftl@&s support a non-vanishing sigp2
moment[26]. However, in measurements aERMES which were in a different kinematic region than the ones
at CLAS, it was found to be consistent with zefs]. The term with the helicity distributiogy; contains the
fragmentation functiorGL, which is at present unknown. A similar term appears also in the longitudinal beam-
helicity asymmetryAy [22]. The latter has been found to be non-zero both BRiMES[11] and at CAS [10].

Finally, the last term of the numerator contains the funcpfgn Similar to the Sivers functiogfllT it is odd under

time reversal (T-odd) and for this reason has been neglected in virtually all theoretical treatments of the measured
lepton-axis asymmetries on a longitudinally polarized target. Recently, it has been recognized that such T-odd dis-
tribution functions can arise through initial or final state interactii@¥s-30] A calculation of the functionfLL

has been performed in RgR1] in the context of a simple diquark spectator model. It should be noted that so far
factorization has been proven only for leading-twist observables in semi-inclusive deep-inelastic scattering with
hadrons in the current fragmentation region detected at low transverse moni8@at88j. A factorization proof

for subleading-twist observables is still open. At the moment no firm experimental information about any of the
subleading-twist terms in E@R) exist.

The extraction otsin¢>)?]L reported here gives a first indication about the size of such subleading-twist effects in
azimuthal target-spin asymmetries. This is especially important when measuring leading-twist asymmetries of the
same order of magnitude where the question arises whether or not subleading-twist contributions can be neglected

The other two terms on the right-hand side of E.read

I[P i D1

RN I
<S|n(¢ ¢S)>UT - f1D1 7 ’
i’hJ_'kT 1
. qg _ 1-y al M it |
(sin(¢ + ¢s)) ;7 = 1-y+ % fiD1 3

which are the leading-twist Sivers and Collins moments, involving either the Sivers distribution function, or the
transversity distributiork1 in conjunction with the Collins fragmentation functidff.

Measurements of azimuthal single-spin asymmetries on a transversely polarized target can be used to eliminate
the contribution of these leading-twist momei$ and (5) to the longitudinal lepton-axis momemingb)'UL.
Hence the subleading-twist terms (E8)) can be isolated. At ERMES kinematics the deviation from unity of
cosd,+ can be neglected. The subleading-twist contribu('m'nmgL then reads

(sing)%, = (sing)ly ;. + SiNG,(SINB + ¢s))y, 7 + SING, +(SING — ps))) 7 (6)

Here sirg, - is evaluated from the lepton kinematics asi2Q~1/1 — y — y2x2M2/02/,/1+ 4x2M?2/ Q2.

For the extraction of the subleading-twist contributi(xinqb)?/ ;. according to Eq(6) the lepton-axis asym-
metries on a longitudinally polarized hydrogen tarfigtwere reanalyzed to have the same binning iand z
as in the measurement on a transversely polarized hydrogen [BygEtirthermore, the sig modulation of the
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semi-inclusive cross section has been extracted in a fit of the normalized-yield asyfmetry

AIUL(Q”):iN (¢) —N (¢)’ )
|PLINT(¢) + N (¢)

where Py, is the longitudinal target polarization ane/<« denotes a target polarized antiparallel/parallel to the
incoming beam direction. The same requirements on the lepton kinematics were used as in the analysis of the
transverse target data, i.8¥2 > 10 Ge\?, 0.023< x < 0.4, 01 < y < 0.85 andQ? > 1 Ge\?, where W is
the invariant mass of the initial photon—nucleon system. Coincident hadrons were accepted @y if 0.7
andé,+, > 0.02 rad, where,«;, is the angle between the directions of the virtual photon and the hadron. The
latter requirement was imposed to avoid a region where the azimuthal @ngl@oorly reconstructed due to
detector smearing. Pions were identified in the momentum range 4GBV < 13.8 GeV using either a thresh-
old Cherenkov counter for the longitudinally polarized data set or a ring imaging Cherenkov counter for the
transversely polarized target data. The lepton-axis moments from the transversely polarized target data set were
extracted in the fit

Al (@, ¢s) = 2[SiN + bs)), 7 SING + bs) + 2[Sin — bs)),, 1 SING — bs) ®)

of the transverse asymmetry in Eq. (1) of R&i.?

A possible uncertainty in the interpretation of the extracted asymmetries in terms @) Ethe contribution
to the analyzed pion samples from the decay of exclusively produced vector mesons (VM). Due to the limited
acceptance of the ERMES spectrometer, a large fraction of these vector mesons cannot be identified. Although
the contribution of their decay pions to the observed pion yield is small—less than 15% for the bighei],
based on a PrHiA 6 Monte Carlo simulation tuned for#kRMES kinematics reproducing the exclusive VM cross
section on a 10% lev§B4]—their contribution to(sin(¢ — (155))?”— for a transversely polarized target could be sig-
nificant[35]. For (sin¢)?]L this contributes only through the transverse component and is thus subtracted through
Eq. (6). The VM contribution to the(sincp)?]L moments from the longitudinal spin component of the target can
be treated as a dilution as no ginlependence on the longitudinal target polarization of either the VM production
or its decay distribution is expectg86]. For an estimate of such effects moments were extracted that have the
diluting contribution from this exclusive channel subtracted. This was done by dividir(githﬁ)?,L moments of
Eq. (6) by (1 — Nvym /Niot) WhereNyy and Nyt are the numbers of pions from VM decays and all detected pions,
respectively.

The main contribution to the systematic uncertainty in the extracted moments arises from the measurement of
the target polarization. Other contributions include smearing due to detector resolution and radiative effects. The
combined systematic uncertainty is found to be less than 0.003.

The moments for charged pions are shown as functions arid z in Fig. 2 and summarized iffable 1 In
addition to the extracted longitudinal photon-axis momeésh&p)?u the lepton-axis moments for longitudinally
and transversely polarized targets are plotteBigm 2 The latter include the prefacter sing, - with which they
appearin thesinqS)'UL measurement. The resulting longitudinal photon-axis moments are significantly positive for
thex™ and consistent with zero for the—. Hence in the case of the™ this subleading-twist contribution dom-
inates the measured lepton-axis asymmetries on a target that is polarized longitudinally with respect to the beam
direction. Therefore it becomes clear that those asymmetries cannot be interpreted in terms of only the Collins frag-
mentation function or the Sivers function. In particular, the contribution from the Sivers function to the measured
longitudinal lepton-axis asymmetries is small compared to the subleading-twist contribution as it appears only for

1 This is in contrast to the previous publication on longitudinal single-spin asymmgiiieghere a weighting method has been used to
extract the sig Fourier component of the asymmetry.

2 Note that in Ref[8] a superscript on the asymmetry is used that is different and not related to the one here. Also the f[BihifRifides
kinematic prefactors that are not needed here.
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Table 1

The 2(sin¢)?,L moments of ther™ andx ~ production cross section for differemt(top) andz (bottom) bins. Only statistical uncertainties

are included. In addition there is a common systematic uncertainty of 0.003. Results are shown for all detected pions and for the case where the
contribution from the decay of exclusive VM has been subtracted

(x) (2) (Pr)[GeV] () (0% [GeV?] Al n's 7’s from exclusive VM subtracted
¥ - T -
2(sing) ] 2(sing) ] 2(sing) ] 2(sing) ]

0.038 Q36 050 068 13 0.02340.008 —0.0124+0.010 Q025+ 0.009 —0.0134+0.011
0.067 Q41 045 059 20 0.0224+ 0.007 —0.0124+0.010 Q023+ 0.008 —0.012+0.010
0.114 Q43 042 055 32 0.0394+0.010 —0.0164+0.013 Q041+ 0.010 —0.0174+0.014
0.178 Q44 041 052 48 0.0574+0.016 Q028+ 0.022 Q0594+ 0.016 Q0294+ 0.023
0.274 Q46 040 048 6.8 0.05340.025 —0.0234+0.035 Q0544 0.025 —0.02440.036
0.065 Q26 042 Q071 23 0.02740.009 Q000+ 0.012 Q0284 0.009 Q000+ 0.012
0.080 Q35 045 062 25 0.0294 0.008 —0.018+0.011 Q0304 0.009 —0.0194+0.012
0.091 Q47 048 055 24 0.0334+0.008 —0.0024+0.011 Q0354 0.009 —0.0024+0.012
0.098 Q62 049 049 23 0.033+0.011 —0.021+0.015 Q0374+0.012 —0.024+0.018
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Fig. 2. The various azimuthal moments appearing in the measurement of ¢hensidulations of single-spin asymmetries on a longitudinally
polarized hydrogen target for charged pions as functionsaridz. The open symbols are the measured lepton-axis moments. The ones from

a transversely polarized target are multiplied-bginé, « according to their appearance in the longitudinal lepton-axis moments. The closed
symbol is the subleading-twist contribution to the measured lepton-axis asymmetries on a longitudinally polarized target. The triangles are
slightly shifted horizontally for distinction. An overall systematic error of 0.003 is not included in the figure.

the transverse component of the target spin. Unfortunately, due to the presence of several contribut{@s (Eq.

it is not possible to make any statements about the size of any subleading-twist function separately. Nevertheless,
it is clear that subleading-twist effects cannot be neglected a priori. This will be important when interpreting the
measured lepton-axis asymmetries on a transversely polarized target which for experimental reasons receive noi
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only contributions from the transverse target spin component (e.g., the Collins and Sivers effects) but also from the
longitudinal component (subleading-twist) as in Eb).3

In summary, single-spin asymmetries on hydrogen polarized longitudinally along the photon direction have been
extracted for the first time. The contribution to the lepton-axis asymmetries from the transverse spin component
in the measurement on a target polarized longitudinally with respect to the beam has been subtracted using the
data from a transversely polarized hydrogen target. The averaged asymmetries in theQ2Bgex0< 0.4 ((x) =
0.082) and @ < z < 0.7 ((z) = 0.40) are 0030+ 0.004stat £ 0.002sys for 7™ and—0.009+ 0.006stat £ 0.001sys
for #—. Forz™ the (sinqb)?,L result is the dominating component in this range. This shows that subleading-twist
effects are large and can, atERMES kinematics, be comparable to leading-twist effects. This must be taken
into account when interpreting asymmetries on transversely or longitudinally polarized targets solely in terms of
leading-twist functions. At lower energies the isolation of leading-twist effects may be even more difficult.
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