37 research outputs found

    Scavengers of the In-between: Feminist Ruminations on Dogs, Love, and Pragmatism

    Get PDF
    Abstract: Western philosophy’s frequent conflation and denigration of animals, human others, embodiment and emotions has been powerfully documented over the past many decades. I explore the impact of this fear and loathing of the body, a somatophobia that infects much of the Western philosophical canon and its orientation toward people of color, white women, and animals. As I share reflections that are meant to enact and reveal an embodied pragmatism, I consider the potential of our love for dogs to ground a more embodied philosophical approach to love. Rooted in my own journey (as philosopher and dog lover), I pose questions about the significance of love and dogs both to the academy, and to flesh and blood theorists. How might our love for dogs support a more attentive, embodied engagement with both the world and the world of ideas

    Teaching in Outrageous Times: Vipassana Practice and the Pedagogical Power of Anger

    Get PDF
    In this reflection piece, I draw on my own experiences, as a progressive professor grounded in awareness practices, to explore some of the pedagogical facets of anger. Due to some deeply held Western assumptions associated with race and gender, I suggest, anger generally continues to be under appreciated and underestimated. I sketch out an alternative, constructive role that anger has begun to play in my own teaching and point to similar strategies and understandings that might be useful to others

    The Clinchfield and Unicoi County: Documenting the Oral History and Traditions of a Railroad Community

    Get PDF
    The panel will focus on the oral history and traditions of the Clinchfield from those that were there, as passengers, employees, landowners, and various other stakeholders of the railroad and Unicoi County

    A framework for complexity in palliative care: A qualitative study with patients, family carers and professionals

    Get PDF
    Background:Palliative care patients are often described as complex but evidence on complexity is limited. We need to understand complexity, including at individual patient-level, to define specialist palliative care, characterise palliative care populations and meaningfully compare interventions/outcomes.Aim:To explore palliative care stakeholders’ views on what makes a patient more or less complex and insights on capturing complexity at patient-level.Design:In-depth qualitative interviews, analysed using Framework analysis.Participants/setting:Semi-structured interviews across six UK centres with patients, family, professionals, managers and senior leads, purposively sampled by experience, background, location and setting (hospital, hospice and community).Results:65 participants provided an understanding of complexity, which extended far beyond the commonly used physical, psychological, social and spiritual domains. Complexity included how patients interact with family/professionals, how services’ respond to needs and societal perspectives on care. ‘Pre-existing’, ‘cumulative’ and ‘invisible’ complexity are further important dimensions to delivering effective palliative and end-of-life care. The dynamic nature of illness and needs over time was also profoundly influential. Adapting Bronfenbrenner’s Ecological Systems Theory, we categorised findings into the microsystem (person, needs and characteristics), chronosystem (dynamic influences of time), mesosystem (interactions with family/health professionals), exosystem (palliative care services/systems) and macrosystem (societal influences). Stakeholders found it acceptable to capture complexity at the patient-level, with perceived benefits for improving palliative care resource allocation.Conclusion:Our conceptual framework encompasses additional elements beyond physical, psychological, social and spiritual domains and advances systematic understanding of complexity within the context of palliative care. This framework helps capture patient-level complexity and target resource provision in specialist palliative care

    ICES Viewpoint background document: Impact from exhaust gas cleaning systems (scrubbers) on the marine environment (Ad hoc).

    Get PDF
    Shipping is a diverse industry that connects the world. The distribution and intensity of commercial shipping is increasing and there is a growing need to assess and mitigate the impacts of vessel activities on the marine environment. New global standards on sulphur content in marine fuels have led to an increasing number of ships installing exhaust gas cleaning systems (EGCS), also known as scrubbers, to reduce their emissions of sulphur oxides to the atmosphere. Ships equipped with a scrubber can continue to use heavy fuel oil, and the process results in discharges of large volumes of acidified water that contain a mix of contaminants, such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), oil residues, and nitrates. For the most common type of scrubber, open loop, this polluted water is directly discharged back to the sea, trading reductions in air pollution for increased water pollution. The scrubber discharge mixture has demonstrated toxic effects in laboratory studies, causing immediate mortality in plankton and exhibiting negative synergistic effects. The substances found in scrubber discharge water are likely to have further impacts in the marine environment through bioaccumulation, acidification and eutrophication. The impacts of scrubber discharge water can be completely avoided through the use of alternative fuels, such as distilled low sulphur fuels. Distilled fuels have the added benefit that they remove the threat of heavy fuel oil spills from shipping activities. If the use of alternative fuels is not adopted, and scrubbers continue to be considered an equivalent method to meet the sulphur emissions limits, then there is urgent need for:1) significant investment in technological advances and port reception facilities to allow zero discharge closed loop scrubber systems;2) improved protocols and standards for measuring, monitoring and reporting on scrubber discharge water acidity and pollutants;3) evidence-based regulations on scrubber water discharge limits that consider the full suite of contaminants

    Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae

    Get PDF
    Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses

    Meta‐Analysis of Genome‐wide Linkage Studies in BMI and Obesity

    Full text link
    Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93663/1/oby.2007.269.pd

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore