91 research outputs found

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    SUMOylation of the Forkhead Transcription Factor FOXL2 Promotes Its Stabilization/Activation through Transient Recruitment to PML Bodies

    Get PDF
    International audienceBACKGROUND: FOXL2 is a transcription factor essential for ovarian development and maintenance. It is mutated in the genetic condition called Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES) and in cases of isolated premature ovarian failure. We and others have previously shown that FOXL2 undergoes several post-translational modifications. METHODS AND PRINCIPAL FINDINGS: Here, using cells in culture, we show that interference with FOXL2 SUMOylation leads to a robust inhibition of its transactivation ability, which correlates with a decreased stability. Interestingly, FOXL2 SUMOylation promotes its transient recruitment to subnuclear structures that we demonstrate to be PML (Promyelocytic Leukemia) Nuclear Bodies. Since PML bodies are known to be sites where post-translational modifications of nuclear factors take place, we used tandem mass spectrometry to identify new post-translational modifications of FOXL2. Specifically, we detected four phosphorylated, one sulfated and three acetylated sites. CONCLUSIONS: By analogy with other transcription factors, we propose that PML Nuclear Bodies might transiently recruit FOXL2 to the vicinity of locally concentrated enzymes that could be involved in the post-translational maturation of FOXL2. FOXL2 acetylation, sulfation, phosphorylation as well as other modifications yet to be discovered might alter the transactivation capacity of FOXL2 and/or its stability, thus modulating its global intracellular activity

    The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO<sub>2</sub>) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling <it>in vitro</it>. In addition, TiO<sub>2 </sub>effects on surfactant ultrastructure were visualized.</p> <p>Methods</p> <p>A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO<sub>2 </sub>NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.</p> <p>Results</p> <p>TiO<sub>2 </sub>NSP, but not MSP, induced a surfactant dysfunction. For TiO<sub>2 </sub>NSP, adsorption surface tension (γ<sub>ads</sub>) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γ<sub>min</sub>) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO<sub>2 </sub>NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γ<sub>ads </sub>(63.6 ± 0.4 mN/m) and γ<sub>min </sub>(21.1 ± 0.4 mN/m). Interestingly, TiO<sub>2 </sub>NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.</p> <p>Conclusion</p> <p>TiO<sub>2 </sub>nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Grass vegetation of some old parks of Cherkassy region

    No full text
    The characteristic of the grass vegetation of some old parks of Cherkassy region is given

    Association of common genetic variants with risperidone adverse events in a Spanish schizophrenic population

    Get PDF
    Risperidone non-compliance is often high due to undesirable side effects, whose development is in part genetically determined. Studies with genetic variants involved in the pharmacokinetics and pharmacodynamics of risperidone have yielded inconsistent results. Thus, the aim of this study was to investigate the putative association of genetic markers with the occurrence of four frequently observed adverse events secondary to risperidone treatment: sleepiness, weight gain, extrapyramidal symptoms and sexual adverse events. A series of 111 schizophrenia inpatients were genotyped for genetic variants previously associated with or potentially involved in risperidone response. Presence of adverse events was the main variable and potential confounding factors were considered. Allele 16Gly of ADRB2 was significantly associated with a higher risk of sexual adverse events. There were other non-significant trends for DRD3 9Gly and SLC6A4 S alleles. Our results, although preliminary, provide new candidate variants of potential use in risperidone safety prediction.This study was supported by Fondo de Investigation Sanitaria (FIS) EC07/90393, EC07/90466 and EC07/90604 Grants. Berta Almoguera's work is supported by a Rio Hortega Grant from Instituto de Salud Carlos III. Pedro Dorado is supported by Instituto de Salud Carlos III-FIS and European Union (FEDER) Grant CP06/00030. The contribution from the Extremadura group is coordinated in the frame of the Iberoamerican Network of PharmacogeneticsPeer reviewe
    corecore