10 research outputs found

    Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    Get PDF
    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich–Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification

    Measurement of prompt photon production in sNN√=8.16 TeV p+Pb collisions with ATLAS

    Get PDF
    The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN√=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb−1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.We acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portu-gal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, in-dividual groups and members have received support from BCKDF, Canarie, CRC and Compute Canada, Canada; COST, ERC, ERDF, Hori-zon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Prompt and non-prompt J/psi elliptic flow in Pb plus Pb collisions at root S-NN=5.02 TeV with the ATLAS detector

    Get PDF
    The elliptic flow of prompt and non-prompt J/ \u3c8 was measured in the dimuon decay channel in Pb+Pb collisions at sNN=5.02 TeV with an integrated luminosity of 0.42nb-1 with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J/ \u3c8 decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9 < pT< 30 GeV , | y| < 2 , and 0\u201360% collision centrality. The elliptic flow coefficient, v2, is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J/ \u3c8 mesons have non-zero elliptic flow. Prompt J/ \u3c8v2 decreases as a function of pT, while for non-prompt J/ \u3c8 it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality

    Search for squarks and gluinos in final states with hadronically decaying tau-leptons, jets, and missing transverse momentum using pp collisions at root s = 13 TeV with the ATLAS detector

    Get PDF
    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying τ-lepton is presented. Two exclusive final states with either exactly one or at least two τ-leptons are considered. The analysis is based on proton-proton collisions at √s=13  TeV corresponding to an integrated luminosity of 36.1  fb⁻¹ delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with τ-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of tanβ in the range 2 ≤ tanβ ≤ 60, and below 120 TeV for tanβ > 30.M. Aaboud … D. Duvnjak … P. Jackson … J.L. Oliver … A. Petridis … A. Qureshi … A.S. Sharma … M.J. White … et al. [The ATLAS Collaboration

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at root s=13 TeV with the ATLAS detector

    No full text
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1). Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z' boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles

    Translating Jane Austen’s Mansfield Park for contemporary Italian readers

    Get PDF
    Abstract - My Italian translation of the novel Mansfield Park by Jane Austen was published by Rusconi Libri in 2012. The present contribution aims to describe and discuss some aspects of my practical experience in translating this novel. A particular focus will be on the issue of what it means, from both the cultural and the literary point of view, to translate this book into Italian in the 21st century, and on the strategies I adopted in order to translate certain aspects of the author’s language and style. Riassunto - Nel 2012 è stata pubblicata la mia traduzione in lingua italiana del romanzo Mansfield Park di Jane Austen. Il presente contributo intende osservare e discutere alcuni elementi culturali e linguistici legati al processo traduttivo di questo testo, con particolare riferimento a due principali questioni. La prima riguarda il significato stesso del tradurre in lingua italiana l’opera di Jane Austen nel ventunesimo secolo, sia dal punto di vista culturale che letterario. La seconda questione entra nel merito delle strategie traduttive che ho scelto per rendere specifici aspetti del linguaggio e dello stile propri dell’autrice inglese

    Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of √s=13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb−1. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated Z'ψ boson. Also presented are limits on Heavy Vector Triplet model couplings

    Search for W ' -> tb decays in the hadronic final state using pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for W'-boson production in the W' -&gt; t (b) over bar -&gt; q (q) over bar 'b (b) over bar decay channel is presented using 36.1 fb(-1) of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral W' boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the W' -&gt; t (b) over bar production cross-section times branching ratio as a function of the W'-boson mass. These limits exclude W' bosons with right-handed couplings with masses below 3.0 TeV and W' bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2018.03.036</p

    Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at root s=13 TeV

    Get PDF
    WOS: 000494939000013A search for a right-handed gauge boson W-R, decaying into a boosted right-handed heavy neutrino N-R, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb(-1). The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared to the expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the W-R and N-R mass plane. Mass values of the W-R smaller than 3.8-5 TeV are excluded for N-R in the mass range 0.1-1.8 TeV. (C) 2019 The Author. Published by Elsevier B.V.ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, Hong Kong SAR, ChinaHong Kong Research Grants Council; ISF, IsraelIsrael Science Foundation; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia, Russian FederationRussian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissements d' Avenir Labex and Idex, ANR, FranceFrench National Research Agency (ANR); DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; EU-ESF, Greece; Greek NSRF, Greece; BSFNSF, Israel; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Herakleitos programme; Thales programme; Aristeia programmeWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.r We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, Canarie, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSFNSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.r The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.[80]
    corecore