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Abstract The propagation of nonlinear, long-wavelength, slow sausage waves in an ex-
panding magnetic flux tube, embedded in a non-magnetic stratified environment, is dis-
cussed. The governing equation for surface waves, which is akin to the Leibovich–Roberts
equation, is derived using the method of multiple scales. The solitary wave solution of the
equation is obtained numerically. The results obtained are illustrative of a solitary wave
whose properties are highly dependent on the degree of stratification.

Keywords Magnetohydrodynamics · Nonlinear waves

1. Introduction

The emergence of magnetic flux in the Sun is inhomogeneous, with isolated magnetic flux
tubes being a common form of structuring. These tubes form an “elastic medium” and may
therefore act as waveguides. The propagation of linear waves along magnetic cylinders has
been studied extensively (see, for example, Defouw, 1976 or Roberts, 1981, or the reviews
by Andries et al., 2009, De Moortel, 2009, Mathioudakis, Jess, and Erdélyi, 2013 or Wang,
2011). Aspects of the propagation of nonlinear waves have also been studied, with the rele-
vant theory and a number of important results summarised in Ruderman (2003), Ruderman
(2006) and Ballai and Ruderman (2011).

The propagation of nonlinear MHD waves (solitons) was first studied in the context of
solar physics by Roberts and Mangeney (1982). The propagation of nonlinear wave modes
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in slabs was discussed more extensively in a series of papers. Merzljakov and Ruderman
(1985) derived the Benjamin–Ono equation governing wave propagation in a vertical mag-
netic slab embedded in a field-free atmosphere. They also estimated the energy transfer of a
propagating soliton in a vertically homogeneous atmosphere, and showed that a soliton so-
lution may exist in a stratified magnetic slab. Next, Molotovshchikov and Ruderman (1987)
derived an equation governing the propagation of nonlinear slow sausage waves along a
magnetic flux tube, again, in a vertically homogeneous atmosphere, but with the added fea-
ture of a non-zero external magnetic field (Be �= 0). Independently, Roberts (1985) obtained
the governing equations in both geometries, in the case where the external magnetic field
is zero (Be = 0). The findings of Molotovshchikov and Ruderman (1987) were similar to
those of Roberts (1985), with the exception that, while their equation possessed a more
complicated form of the dispersive term, it was open to numerical analysis. These results,
together with those of Molotovshchikov (1989), confirmed the existence of solitary MHD
wave solutions to the governing equation whose properties on collision are similar to those
of solitons.

Several recent developments of the aforementioned models may be found. A discussion
of the use of the thin flux tube approximation, its limitations, and the two-mode approxi-
mation may be found in Zhugzhda (2002). Zhugzhda (2004) studied the solutions of slow
nonlinear MHD equations in the form of shock waves, while Zhugzhda (2005) derived a
new set of equations without making use of the long-wavelength approximation. Numeri-
cally, Sakai et al. (2000) studied the impact that gravitational stratification has on the upward
and downward propagation of nonlinear MHD waves in flux tubes, while Erdélyi and Fe-
dun (2006) performed simulations modelling excitation, time-dependent propagation, and
interaction of solitary waves in solar atmospheric plasmas. More recently, Chargeishvili and
Japaridze (2016) found that the propagation of a modulated MHD soliton may cause the
temperature of a plasma to rise in the peripheral regions of a magnetic flux tube.

From an observational point of view, Zaqarashvili, Kukhianidze, and Khodachenko
(2010) suggested that a series of observations by the Solar Optical Telescope on board the
Hinode satellite confirms the existence of slow sausage solitons, propagating in a stratified
atmosphere. However, their theoretical analysis of the observations made use of a model of
a soliton in a magnetic slab, where a tube would have been better suited.

The present work deals with extending the research of Molotovshchikov and Ruderman
(1987) so that it includes the effects of gravitational stratification and radius expansion of the
flux tube. We begin by establishing how the undisturbed magnetic field, pressures and densi-
ties are related to the varying radius of the tube, and to each other. Next, we employ the thin
flux tube approximation and make use of the method of multiple scales to expand the ideal
MHD equations. We then reduce these equations to a single nonlinear integro-differential
equation. The equation obtained by Molotovshchikov and Ruderman (1987) is then shown
to be a simplified case of that obtained here. Lastly, we reduce the governing equation to
a form more suitable to analysis, and we numerically obtain a series of solitary wave so-
lutions. The properties of these solutions, including speed–amplitude relations, dependence
on stratification, and width–amplitude relations, are then discussed.

2. The Basic State

We consider the undisturbed state to be a vertically straight magnetic flux tube, with ver-
tically variable cross-section, embedded in a stratified field-free atmosphere. The motion
is assumed to be axisymmetric, such that in the cylindrical coordinate system (r, θ, z), the
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Figure 1 A soliton, and a sausage wave, respectively, represented at the boundary of the flux tube.

dependent variables are independent of θ , and the azimuthal components of velocity and of
the magnetic field are null. We also assume that the boundary of the flux tube is defined by
r = r0(z). Figure 1 illustrates a vertical section of a soliton propagating on the boundary of
the tube, and a sausage wave.

We suppose that the exterior pressure pe0 and the exterior density ρe0 depend on z only,
and are related by the equation

dpe0

dz
= −gρe0, (1)

where g is the gravitational acceleration.
Inside the tube, the equilibrium quantities, namely the kinetic pressure p0, the density ρ0,

and the magnetic induction B0 depend on r and z only. We suppose that the azimuthal com-
ponent of the magnetic field is zero, such that B0 = (Br0,0,Bz0), and also that ∇ × B0 = 0.
Finally, it is assumed that the atmospheric density scale height H is much greater that the
radius of the tube (r0 � H), such that the effect of gravity is weak, but not negligible.

We introduce the magnetic vector potential A = (0,A,0). The magnetic field, density,
and kinetic pressure inside the tube can therefore be defined by the following set of equations
and boundary conditions:

B0r = −∂A

∂z
, B0z = 1

r

∂(rA)

∂r
, ∇2A = 0, (2)

∂p0

∂z
= −gρ0,

∂p0

∂r
= 0, (3)

1

2μ0

[(
∂A

∂z

)2

+
(

1

r

∂(rA)

∂r

)2]
+ p0 = pe0 at r = r0(z), (4)

rA = constant at r = r0(z), (5)

∂ρ0

∂r
= 0,

∂A

∂z
= 0 at r = 0. (6)

Equation (2) is derived using only the definition of the vector potential A, Equation (4)
denotes the balance of pressure, Equation (5) is related to flux conservation, and Equation (6)
is the condition of the symmetry of the tube with respect to the z-axis.
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Let r0/H ∼ μ � 1. Introducing ζ = μz we rewrite the set of equations and boundary
conditions for A as

μ2 ∂2A

∂ζ 2
+ ∂

∂r

(
1

r

∂(rA)

∂r

)
= 0, (7)

1

2μ0

[
μ2

(
∂A

∂z

)2

+
(

1

r

∂(rA)

∂r

)2]
= pe0 − p0, at r = r0(ζ ), (8)

A = constant at r = 0, (9)

rA = constant at r = r0(ζ ). (10)

Using Equations (7), (8), and (9) we obtain

A = ±1

2
r
[
2μ0(pe − p0)

]1/2 + O
(
μ2

)
. (11)

Now, taking Equations (10) and (11) we obtain

±[
2μ0(pe − p0)

]1/2 = Sr−1
0 (ζ ) + O

(
μ2

)
. (12)

In Equation (12), S is an arbitrary constant, making the choice of sign on the left-hand side
arbitrary. We choose the left-hand side to be positive and proceed with the derivation.

By using Equations (1)–(3), (11), and (12) we derive the following set of relations defin-
ing the undisturbed state, accurate to order μ:

ρ0 = −μ

g

dp0

dζ
, pe0 = p0 + S2

2μ0r
4
0

, ρe0 = −μ

g

dpe0

dζ
,

B0z = r−2
0 S, B0r = μrr−3

0

dr0

dζ
S ≡ μB∗

0r .

(13)

The undisturbed state is hence defined by two arbitrary functions, r0(ζ ) and p0(ζ ), and the
constant S. Moreover, we assume that

dp0

dζ
∼ p0/μH,

so that the terms of order zero in the expansion of ρ and ρe in the power series of μ are ρ0

and ρe0.

3. The Governing Equation for Nonlinear Surface MHD Waves

After having defined the undisturbed state using Equations (13), we may now begin deriving
the equation that governs the propagation of nonlinear small-amplitude slow sausage MHD
waves in the long-wavelength approximation. Since the tube is assumed to be axisymmetric,
the variables we deal with depend on r and z only, and the azimuthal component of the
velocity and the magnetic induction are zero.

Under the stated assumptions, the motion of the plasma inside the gravitationally strat-
ified and expanding tube may be modelled by the equations of magnetohydrodynamics
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(MHD):

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂

∂t

(
p

ργ

)
+ v · ∇

(
p

ργ

)
= 0,

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p + 1

μρ
(∇ × B) × B + g,

∂B

∂t
+ ∇ × (v × B) = 0,

∇ · B = 0.

(14)

Outside the tube, the motion of the gas is governed by the equations of gas dynamics:

∂ρe

∂t
+ ∇ · (ρeve) = 0,

∂ve

∂t
+ (ve · ∇)ve = − 1

ρe

∇pe + g,

∂

∂t

(
pe

ρ
γ
e

)
+ ve · ∇

(
pe

ρ
γ
e

)
= 0.

(15)

We define the velocity as v = (u,0,w). The boundary of the tube is defined as r =
r0 + η, where η is the disturbance of the boundary. Here, the conditions of the continuity of
the normal components of the velocity and the magnetic field, as well as the condition of
equilibrium of the total pressure, and the kinematic boundary condition must be satisfied.
These are

u − w
∂(η + r0)

∂z
= ue − we

∂(η + r0)

∂z
,

Br − Bz

∂(η + r0)

∂z
= 0,

p + B2

2μ0
= pe, u = ∂η

∂t
+ w

∂η

∂z
.

(16)

Additionally, we assume that all disturbances of any variables should vanish as |r| → ∞.
Let ε � 1 be the non-dimensional amplitude of the waves. By the thin-tube approxima-

tion, we assume that r0/L ∼ ε, where L is the wavelength. We now introduce a new variable
τ = ε(t − ∫

dz/cT ). Hence, the nonlinearity and dispersion significantly influence the wave
when it progresses a distance of the order of ε−2r0. For the effect of the stratification to be
of the same order as the effects of nonlinearity and dispersion, we assume that μ = ε2 in our
description of the undisturbed state.

Inside the tube, the horizontal scale is equal to r0. Outside it, however, the horizontal and
vertical scales are equal to the wavelength. It is therefore advantageous to introduce the new
variable re = εr to be used outside the tube, instead of r .

We now transform the set of MHD equations (14), the set of gas equations (15), and the
associated boundary conditions (16) into the new coordinate systems using r , τ , ζ , and re ,
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τ , ζ as appropriate:

∂ρ

∂τ
+ ε−1 1

r

∂(rρu)

∂r
− 1

cT

∂(ρw)

∂τ
+ ε

∂(ρw)

∂ζ
= 0,

ε
∂u

∂τ
+ u

∂u

∂r
− ε

w

cT

∂u

∂τ
+ ε2w

∂u

∂ζ
=

= − 1

ρ

∂

∂r

(
p + B2

z

2μ0

)
− Bz

μ0ρ

(
ε

cT

∂Br

∂τ
− ε2 ∂Br

∂ζ

)
,

∂w

∂τ
+ ε−1u

∂w

∂r
− w

cT

∂w

∂τ
+ εw

∂w

∂ζ
=

= 1

ρ

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)(
p + B2

r

2μ0

)
+ Br

μ0ρ
ε−1 ∂Bz

∂r
− ε−1g,

ε−1 ∂Br

∂τ
= ε−1

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)
(wBr − uBz),

∂Bz

∂τ
= ε−1 1

r

∂

∂r

[
r(wBr − uBz)

]
,

∂

∂τ

(
p

ργ

)
+ ε−1u

∂

∂r

(
p

ργ

)
− w

cT

∂

∂τ

(
p

ργ

)
+ εw

∂

∂ζ

(
p

ργ

)
= 0,

ε−1 1

r

∂(Brr)

∂r
− 1

cT

∂Bz

∂τ
+ ε

∂Bz

∂ζ
= 0.

(17)

Outside the tube, the governing equations become

∂ρe

∂τ
+ 1

re

∂

∂re

(reρeue) − 1

cT

∂

∂τ
(ρewe) + ε

∂

∂ζ
(ρewe) = 0,

∂ue

∂τ
+ ue

∂ue

∂re

− we

cT

∂ue

∂τ
+ εwe

∂ue

∂ζ
= − 1

ρe

∂pe

∂re

,

∂we

∂τ
+ ue

∂we

∂re

− we

cT

∂we

∂τ
+ εwe

∂we

∂ζ
= 1

cT ρe

∂pe

∂τ
− ε

ρe

∂pe

∂ζ
− g,

∂

∂τ

(
pe

ρ
γ
e

)
+ ue

∂

∂re

(
pe

ρ
γ
e

)
− we

cT

∂

∂τ

(
pe

ρ
γ
e

)
+ εwe

∂

∂ζ

(
pe

ρ
γ
e

)
= 0.

(18)

The boundary conditions at r = r0 + η become

ε−1u + w

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)
(r0 + η) = ε−1ue + we

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)
(r0 + η),

ε−1Br + Bz

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)
(r0 + η) = 0,

ε−1u = ∂η

∂τ
− w

(
1

cT

∂

∂τ
− ε

∂

∂ζ

)
(r0 + η), p + B2

2μ0
= pe.

(19)

We now seek the solution of Equations (17) and (18) with corresponding boundary con-
ditions (19) in the form of expansions in a power series of ε. It follows from the related linear
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theory that the disturbances of w, ρ, p, Bz, and η are of the order of ε. We may therefore
write the power series for each variable in the form

f = f0 + εf1 + ε2f2 + · · · . (20)

The disturbances of u, Br , ue , we , pe , and ρe are of the order of ε2, so their power series
may be written in the form:

f = f0 + ε2f1 + ε3f2 + · · · . (21)

Finally, Br is expanded as

Br = ε2
(
B∗

r0 + Br1
) + ε3Br2. (22)

We emphasise the fact that because the equilibrium values of the velocity in the undisturbed
state are equal to zero, the values of u0, ue0, w0, we0, and η0 are all equal to zero in their
respective expansions.

Let us substitute Equations (20), (21), and (22) into Equations (17), and retain the terms
of order ε. Taking into account Equations (13) gives

∂ρ1

∂τ
+ 1

r
ρ0u1 + ρ0

∂u1

∂r
− 1

cT

ρ0
∂w1

∂τ
= 0,

∂

∂r

(
p1 + Bz0Bz1

μ0

)
= 0,

cT

∂w1

∂τ
= 1

ρ0

∂p1

∂τ
, cT

∂Br1

∂τ
= −Bz0

∂u1

∂τ
,

∂Bz1

∂τ
= −1

r
Bz0u1 − Bz0

∂u1

∂r
,

∂p1

∂τ
= c2

0

∂ρ1

∂τ
,

∂Br1

∂r
− 1

cT

∂Bz1

∂τ
+ 1

r
Br1 = 0.

(23)

Taking the terms of the order of ε in the boundary conditions (19) we obtain

1

μ0
Bz0Bz1 + p1 = 0, u1 = u

(0)

e1 , u1 = ∂η1

∂τ
, (24)

at r = r0. We omit rewriting here the condition of the continuity of the magnetic field at the
boundary, since it would be equivalent to the fourth of Equations (23).

When deriving Equations (24), we make use of the relation re = εr and expand all the
outside variables in series around re = 0. This means that, for example, ue(εr0) = u(0)

e +
εr0(∂ue/∂re)

(0) + · · · , where the upper zero indices indicate that the variable is taken at
re = 0.
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Assuming that all disturbances vanish as τ → ∞ or τ → −∞, we may derive a new set
of relations from Equations (23), and boundary conditions (24). These are:

Bz1 = −Bz0
cT

v2
A

w1, Br1 = −Bz0

cT

u1,

p1 = ρ0cT w1, ρ1 = 1

c2
0

ρ0cT w1,

v2
A

∂u1

∂r
− cT

∂w1

∂τ
= −v2

A

r
u1.

(25)

It has been shown that, in addition to the surface modes, there is an infinite set of body
modes in a magnetic flux tube (Edwin and Roberts, 1983). In order to be able to differentiate
between surface and body waves, we note that in the case of slow sausage surface MHD
waves, u is a linear function of r , while in the case of body waves it is a sinusoidal function
of r . We now suppose that u1 is a linear function of r , and from (24) we obtain

u1 = r

r0

∂η1

∂τ
. (26)

Substituting Equation (26) into the last of Equations (25) and integrating, we find

w1 = 2v2
A

cT r0
η1. (27)

Let us take the terms of the order of ε2 in Equations (17), in conjunction with Equa-
tions (25), (26), and (27) we obtain

∂ρ2

∂τ
+ ρ0

u2

r
+ ρ0

∂u2

∂r
− ρ0

cT

∂w2

∂τ

= 4ρ0v
2
A

c2
T − 2v2

A

c2
T c2

0r
2
0

η1
∂η1

∂τ
− ∂

∂ζ

(
2ρ0v

2
Aη1

cT r0

)
, (28)

∂

∂r

(
p2 + Bz0Bz2

μ0

)
= 0, (29)

∂w2

∂τ
− 1

cT ρ0

∂p2

∂τ
= 4v4

A

c2
0 − c2

T

c3
T c2

0r
2
0

η1
∂η1

∂τ
− 1

ρ0

∂

∂ζ

(
2ρ0v

2
Aη1

r0

)
+ 2v2

Aη1

ρ0c
2
0r0

dp0

dζ
,

∂Br2

∂τ
+ Bz0

cT

∂u2

∂τ
= −rBz0

2v2
A − c2

T

c3
T r2

0

∂

∂τ

(
η1

∂η1

∂τ

)
+ r

∂

∂ζ

(
Bz0

r0

∂η1

∂τ

)
,

∂Bz2

∂τ
+ Bz0

u2

r
+ Bz0

∂u2

∂r
= −4Bz0

v2
A − c2

T

c2
T r2

0

η1
∂η1

∂τ
+ 4v2

Aη1

cT r0

∂B∗
r0

∂r
, (30)

∂p2

∂τ
− c2

0

∂ρ2

∂τ
= 4(γ − 1)ρ0v

4
A

c2
0r

2
0

η1
∂η1

∂τ
− 2v2

Aη1

cT r0

(
dp0

dζ
− c2

0

dρ0

dζ

)
, (31)

∂Br2

∂r
+ Br2

r
− 1

cT

∂Bz2

∂τ
= −∂Bz0

∂ζ
.
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We also take the terms of the order of ε2 in the boundary condition for the total pressure:

p2 + Bz0Bz2

μ0
= p

(0)

e1 − 2ρ0v
2
A

r2
0

η2
1 at r = r0. (32)

It follows from Equation (29) that Equations (32) are satisfied everywhere inside the flux
tube. We must now find a way to express ρ2, p2 and u2 in the above equations in terms of
w2, η1, and p

(0)

e1 . Using Equations (28)–(32) we arrive at

∂η1

∂ζ
− aη1

∂η1

∂τ
+ η1

2b

db

dζ
− cT r0

4ρ0v
4
A

∂p
(0)

e1

∂τ
= 0,

a = cT

c4
0r0

[
3c2

0 + (γ + 1)v2
A

]
, b = ρ0v

4
A

cT

.

(33)

The only task left now is that of expressing pe1 in terms of η1. In order to do so we
consider the terms of the order of ε2 in Equations (18):

∂ρe1

∂τ
+ ρe0ue1

re

+ ρe0
∂ue1

∂re

− ρe0

cT

∂we1

∂τ
= 0,

∂ue1

∂τ
= − 1

ρe0

∂pe1

∂re

,

we = 1

cT ρe0
pe1,

pe1 = c2
eρe1.

(34)

Eliminating all other variables in favour of pe1 yields

∂2pe1

∂r2
e

+ 1

re

∂pe1

∂re

+ q2 ∂2pe1

∂τ 2
= 0.

q2 = c2
e − c2

T

c2
ec

2
T

.

(35)

The boundary condition for Equation (25) is derived using Equations (24) and (34):

∂pe1

∂re

= −ρe0
∂2η1

∂τ 2
at re = εr0. (36)

Fourier transforming Equations (35) and (36) with respect to τ yields

r2
e

∂2p̂e1

∂r2
e

+ re

∂p̂e1

∂re

− r2
e ω2q2p̂e1 = 0,

∂p̂e1

∂re

= −ρe0ω
2η̂1, at re = εr0.

(37)

Taking the solution of Equation (37) at re = εr0 gives

p̂
(0)

e1 = −ρe0

q

ωK0(qωεr0)

K1(qωεr0)
η̂1. (38)
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Using the Fourier inversion theorem, and the convolution theorem, and after making the
suitable variable transformations, we write p

(0)

e1 as

p
(0)

e1 = ρe0

2q

∂2

∂τ 2
C(η1),

C(η1) =
∫ ∞

−∞
F

(
ε−1q−1r−1

0

(
τ − τ ′))η1

(
ζ, τ ′)dτ ′,

F (τ) = 2

π

∫ ∞

0

K0(ω) cos(ωτ)

ωK1(ω)
]dω.

(39)

Let us now substitute Equation (39) into Equation (33) in order to obtain

∂η1

∂ζ
− aη1

∂η1

∂τ
+ η1

2b

db

dζ
− δr0

4c2
T

∂3

∂τ 3
C(η1) = 0, (40)

where

δ = ρe0cec
4
T

2ρ0v
4
A(c2

e − c2
T )1/2

.

Taking η ≈ εη1, and returning to the initial variables, the governing equation for the stratified
atmosphere becomes

∂η

∂z
+ 1

cT

∂η

∂t
− aη

∂η

∂t
− δr0

4c2
T

∂3

∂t3
C(η) + η

1

2b

db

dz
= 0,

C(η) =
∫ ∞

−∞
F

(
q−1r−1

0

(
t − t ′

))
η1

(
z, t ′

)
dt ′. (41)

Equation (41) describes the propagation of nonlinear, small-amplitude, long-wavelength
slow sausage MHD waves along an expanding magnetic cylinder in a field-free environ-
ment under the influence of three competing effects: nonlinearity, dispersion, and stratifica-
tion (described by the final term in the equation).

4. Numerical Investigation

The initial value problem for Equation (41) was first solved numerically by Leibovich and
Randall (1972). When doing so, they used a simplified version of the equation which we
will now address briefly.

In their analysis, Leibovich and Randall (1972) did not discuss the convergence of the
solitary wave solution to the Leibovich–Roberts equation. Molotovshchikov and Ruderman
(1987) resolved this problem by finding a solitary wave solution which converges quickly,
using the Petviashvili method (Petviashvili, 1976). We will employ this method here to
obtain solutions to Equation (41). First, let us make the substitutions η = b−1/2, and t =
θ + ∫

dz/cT , so that Equation (41) becomes

∂

∂z
− a

b1/2


∂

∂θ
− δr0

4c2
T

∂3

∂θ3
C() = 0. (42)
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To further simplify, we introduce the independent variable σ = ∫
dzab−1/2, and multiply the

obtained equation by b1/2/a. Equation (42) then becomes

∂

∂σ
− 

∂

∂θ
− δr0b

1/2

4c2
T a

∂3

∂θ3
C() = 0. (43)

We now search for the solutions of Equation (43) that depend on y = q−1r−1
0 (2θ − V σ).

Equation (43) reduces to

V  + 2 + ψ
∂2

∂y2
C() = 0,

C
(
(y)

) =
∫ ∞

−∞
F

(
y − y ′)(

y ′)dy ′,

ψ = 2c3
ec

4
0c

5/2
T ρe0

v2
Aρ

1/2
0 (c2

e − c2
T )3/2[3c2

0 + (γ + 1)v2
A] .

(44)

When deriving Equation (44), we integrated with respect to y and took into account the fact
that  → 0 as |y| → ∞.

For ease of computation, we assume that ψ is constant, and apply the numerical scheme
for several values of ψ so that we may see how the shape of the wave is impacted by the
level of stratification. We take the Fourier transform of Equation (44), where F denotes the
Fourier transform, and k is the transformed variable y. Furthermore, applying the convolu-
tion theorem will yield the equation

V ̂ + ̂2 − ψk2F̂ (k)̂ = 0,

where F̂ (k) is the Fourier transform of the integral function F(y). This equation may now
be rearranged as

̂
[
V + ψk2F̂ (k)

] = ̂2 = 1

2π

∫ ∞

−∞
̂

(
k′)̂(

k′ − k
)

dk′.

We may now define  in terms of two new functions

̂(k) = G(k)�(k), G(k) = {
V + ψk2F̂ (k)

}−1
,

�(k) = 1

2π

∫ ∞

−∞
̂

(
k′)̂(

k′ − k
)

dk′,
(45)

and further write G(k) explicitly as

G(k) = {
V + 2ψ |k|K0

(|k|)K1

(|k|)−1}−1
.

When doing so, we find that G(k) is finite for any k provided that V > 0, and also that
G(k) → 0 at k → ∞. All conditions needed for applying the Petviashvili method are thus
satisfied.

Following Molotovshchikov and Ruderman (1987), we rearrange Equation (45) such that
it becomes

̂(k) =
(

s1

s2

)2

G(k)�(k),
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s1 =
∫ ∞

−∞
2(k)dk, s2 =

∫ ∞

−∞
(k)G(k)�(k)dk. (46)

It is immediately visible that Equations (45) and (46) are equivalent, meaning that any so-
lution of one is also a solution of the other. We proceed to solve Equation (46) using the
iterative method defined such that the (n + 1)th term is related to the nth by the formula

̂n+1 =
(

s1n

s2n

)2

G�n.

We implement the iterative method, using ̂1 = exp(−|k|) as a first approximation, and halt
it provided that

max

∣∣∣∣ ̂n+1 − ̂n

̂n+1

∣∣∣∣ < 10−3.

The sequence {̂} then rapidly converges, with s1n/s2n → 1.
The results obtained by Molotovshchikov and Ruderman (1987) are similar to our own

computations. This is due to the fact that the equation in Molotovshchikov and Ruderman
(1987) may be reduced to Equation (44) when the parameter ψ is equal to one.

The results of the numerical calculations are presented in Figures 2–7. Figure 2 illustrates
the shape of the solitary wave solutions of Equation (44), computed for the same value of
the parameter ψ , while decreasing the value of the speed V . We find that the amplitude of
the wave decreases sharply, and it is directly proportional to the speed. Such a behaviour is
expected when studying the propagation of solitary waves.

Figure 3 illustrates the different shapes of the solitary wave solutions, for a constant value
of V , and ascending values of the term describing stratification, ψ . We observe that, with
greater values of the parameter ψ , one obtains waves of larger width, and slightly lower
amplitude.

In Figure 4, the dependence of the wave width D to the amplitude a, where (D/2) =
a/2 and a = (0), is shown to be of similar nature to that of the Benjamin–Ono soliton. We
also note that the level of dependence is in-between that of the Benjamin–Ono soliton and
the Korteweg–de Vries soliton.

Figure 2 Three examples of
solitary wave shape computed for
ψ = 2, and various values of the
parameter V .
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Figure 3 This figure illustrates
the dependence of the solitary
wave computed for V = 2 on the
parameter ψ .

Figure 4 The dependence of the
solitary wave width D on the
amplitude a. From top to bottom,
the lines correspond to the
Benjamin–Ono soliton, the
solitary wave solution obtained in
the present work, and the
Korteweg–de Vries soliton,
respectively.

Figure 5 builds on Figure 2 and depicts the dependence of the wave amplitude a on the
speed V for different values of the stratification parameter ψ . We find that the speed is
almost linearly dependent on the amplitude, with greater values of ψ forcing lower values
of the amplitude, while also making the dependence more nearly linear.

In Figure 6, we observe how the width D of the solitary wave is affected by an increase
in the parameter ψ , for different values of V . We note that smaller values of V correspond
to steeper growth of the width D as ψ increases. We also note that the growth appears to be
parabolic, similar to that of a square root function.

Finally, Figure 7 presents the dependence of the amplitude on the parameter ψ , for differ-
ent values of V . The vertical dashed line marks the point where ψ = 1, which represents the
case where stratification is absent. The horizontal dashed lines are approximate asymptotes
for the amplitude a, for each respective value of V .
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Figure 5 The dependence of the
solitary wave amplitude a on the
speed V for different values of
the parameter ψ .

Figure 6 The dependence of the
solitary wave width D on the
stratification parameter ψ ,
plotted for different values of V .

5. Conclusion

The propagation of long-wavelength small-amplitude slow MHD sausage waves in expand-
ing magnetic flux tubes in a field-free environment, with the effects due to gravity taken into
account, is modelled by Equation (41).

It should be noted that in this case the tube is not of constant width, being stratified, and
expanding due to the effects of gravity. The vertical gravitational stratification is represented
in Equation (41) by the final term. Waves propagating along the tube will therefore be under
the influence of three competing effects: nonlinearity, dispersion, and stratification. We have
therefore proven that if these three effects are of the same order, a soliton may form and
propagate stably.

All of these properties are relevant to the study of coronal heating due to the innate
properties of solitons, such as energy conservation during propagation. This makes solitons
prime candidates as a possible energy transfer mechanism from the photosphere into the
lower atmosphere.
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Figure 7 The dependence of the
solitary wave amplitude with
respect to the stratification
parameter ψ , plotted for different
values of V .

The thin flux tube approximation imposes the condition that r0 � H , which suggests that,
for a photospheric scale height of H ≈ 200 km, we may expect a tube radius of r0 � 50 km
at the base.

To illustrate an application of the theory, we choose the following values typical to the
photosphere: vA = 10 km s−1, ce = c0 = 8 km s−1, γ = 5

3 , ρ0 = 5 × 10−3 kg m−3, and a den-
sity ratio of ρe0/ρ0 = 0.9, which yield a wave amplitude of η ≈ 3 km. In contrast, choosing
values typical to the base of the corona, vA = 3000 km s−1, ce = c0 = 200 km s−1, γ = 5

3 ,
ρ0 = 1 × 10−10 kg m−3, and a density ratio of ρe0/ρ0 = 0.9, the amplitude of the wave will
increase to η ≈ 24 km.

Further work may include the numerical calculation of the typical energy of such solitary
waves in the photosphere, the distance a disturbance would need to travel before the various
forces balance out and a soliton forms, or the interaction of several solitary waves in order
to confirm that their properties conform to those of solitons.
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