41 research outputs found

    Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity

    Get PDF
    Exposure to biodiverse aerobiomes supports human health, but it is unclear which ecological factors influence exposure. Few studies have investigated near-surface green space aerobiome dynamics, and no studies have reported aerobiome vertical stratification in different urban green spaces. We used columnar sampling and next generation sequencing of the bacterial 16S rRNA gene, combined with geospatial and network analyses to investigate urban green space aerobiome spatio-compositional dynamics. We show a strong effect of habitat on bacterial diversity and network complexity. We observed aerobiome vertical stratification and network complexity that was contingent on habitat type. Tree density, closer proximity, and canopy coverage associated with greater aerobiome alpha diversity. Grassland aerobiomes exhibited greater proportions of putative pathogens compared to scrub, and also stratified vertically. We provide novel insights into the urban ecosystem with potential importance for public health, whereby the possibility of differential aerobiome exposures appears to depend on habitat type and height in the airspace. This has important implications for managing urban landscapes for the regulation of aerobiome exposure

    Resource competition drives an invasion‐replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white‐toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Resource competition drives an invasion-replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services

    Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian

    Get PDF
    Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among- population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome composition in amphibians could help to inform amphibian conservation efforts against infectious diseases

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens

    Get PDF
    Microbial symbionts of vertebrate skin have an important function in defense of the host against pathogens. In particular, the emerging chytrid fungus Batrachochytrium dendrobatidis, causes widespread disease in amphibians but can be inhibited via secondary metabolites produced by many different skin-associated bacteria. Similarly, the fungal pathogens of terrestrial salamander eggs Mariannaea elegans and Rhizomucor variabilis are also inhibited by a variety of skin-associated bacteria. Indeed, probiotic therapy against fungal diseases is a recent approach in conservation medicine with growing experimental support. We present a comprehensive Antifungal Isolates Database of amphibian skin-associated bacteria that have been cultured, isolated, and tested for antifungal properties. At the start, this database includes nearly 2000 cultured bacterial isolates from 37 amphibian host species across 18 studies on five continents: Africa, Oceania, Europe, and North and South America. As the research community gathers information on additional isolates, the database will be updated periodically. The resulting database can serve as a conservation tool for amphibians and other organisms, and provides empirical data for comparative and bioinformatic studies. The database consists of a FASTA file containing 16S rRNA gene sequences of the bacterial isolates, and a metadata file containing information on the host species, life-stage, geographic region, and antifungal capacity and taxonomic identity of the isolate

    The tonic immobility test: Do wild and captive golden mantella frogs (Mantella aurantiaca) have the same response?

    Get PDF
    Adaptations to captivity that reduce fitness are one of many reasons, which explain the low success rate of reintroductions. One way of testing this hypothesis is to compare an important behavioural response in captive and wild members of the same species. Thanatosis, is an anti-predator strategy that reduces the risk of death from predation, which is a common behavioral response in frogs. The study subjects for this investigation were captive and wild populations of Mantella aurantiaca. Thanatosis reaction was measured using the Tonic Immobility (TI) test, a method that consists of placing a frog on its back, restraining it in this position for a short period of time and then releasing it and measuring how much time was spent feigning death. To understand the pattern of reaction time, morphometric data were also collected as body condition can affect the duration of thanatosis. The significantly different TI times found in this study, one captive population with shorter responses, were principally an effect of body condition rather than being a result of rearing environment. However, this does not mean that we can always dismiss the importance of rearing environment in terms of behavioural skills expressed

    Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome

    Get PDF
    Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate that fungi form critical components of putative microbial interaction networks, where the strength and frequency of interactions varies with host taxonomy. Host phylogeny drives differences in overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in mammals and for the bacterial microbiome. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions. SIGNIFICANCE STATEMENT Microbes perform vital metabolic functions that shape the physiology of their hosts. However, almost all research to date in wild animals has focused exclusively on the bacterial microbiota, to the exclusion of other microbial groups. Although likely to be critical components of the host microbiome, we have limited knowledge of the drivers of fungal composition across host species. Here we show that fungal community composition is determined by host species identity and phylogeny, and that fungi form extensive interaction networks with bacteria in the microbiome of a diverse range of animal species. This highlights the importance of microbial interactions as mediators of microbiome-health relationships in the wild

    Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas)

    Get PDF
    Amphibians support symbiotic bacterial communities on their skin that protect against a range of infectious pathogens, including the amphibian chytrid fungus. The conditions under which amphibians are maintained in captivity (e.g. diet, substrate, enrichment) in ex situ conservation programmes may affect the composition of the bacterial community. In addition, ex situ amphibian populations may support different bacterial communities in comparison to in situ populations of the same species. This could have implications for the suitability of populations intended for reintroduction, as well as the success of probiotic bacterial inoculations intended to provide amphibians with a bacterial community that resists invasion by the chytrid fungus. We aimed to investigate the effect of a carotenoid-enriched diet on the culturable bacterial community associated with captive red-eyed tree frogs (Agalychnis callidryas) and make comparisons to bacteria isolated from a wild population from the Chiquibul Rainforest in Belize. We successfully showed carotenoid availability influences the overall community composition, species richness and abundance of the bacterial community associated with the skin of captive frogs, with A. callidryas fed a carotenoid-enriched diet supporting a greater species richness and abundance of bacteria than those fed a carotenoid-free diet. Our results suggest that availability of carotenoids in the diet of captive frogs is likely to be beneficial for the bacterial community associated with the skin. We also found wild A. callidryas hosted more than double the number of different bacterial species than captive frogs with very little commonality between species. This suggests frogs in captivity may support a reduced and diverged bacterial community in comparison to wild populations of the same species, which could have particular relevance for ex situ conservation projects

    Priorities for research in soil ecology

    Get PDF
    The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia – Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia. The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise
    corecore