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Abstract

The ecological interactions that occur in and with soil are of consequence in many 

ecosystems on the planet. These interactions provide numerous essential ecosystem 

services, and the sustainable management of soils has attracted increasing scientific and 

public attention. Although soil ecology emerged as an independent field of research 

many decades ago, and we have gained important insights into the functioning of soils, 

there still are fundamental aspects that need to be better understood to ensure that the 

ecosystem services that soils provide are not lost and that soils can be used in a 

sustainable way. In this perspectives paper, we highlight some of the major knowledge 

gaps that should be prioritized in soil ecological research. These research priorities were 

compiled based on an online survey of 32 editors of Pedobiologia – Journal of Soil 

Ecology. These editors work at universities and research centers in Europe, North 

America, Asia, and Australia. The questions were categorized into four themes: (1) soil 

biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) 

global change and soil management, and (4) new directions. The respondents identified 

priorities that may be achievable in the near future, as well as several that are currently 

achievable but remain open. While some of the identified barriers to progress were 

technological in nature, many respondents cited a need for substantial leadership and 

goodwill among members of the soil ecology research community, including the need for 

multi-institutional partnerships, and had substantial concerns regarding the loss of 

taxonomic expertise. 
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Introduction

Many, if not most, of the ecosystems on Earth are dependent on, or substantially influenced 

by, interactions and processes occurring within and among the planet’s soils (including 

sediments). The remarkable biodiversity harbored in soil provides essential ecosystem 

services (Bardgett and van der Putten, 2014; Wall et al., 2015), and the sustainable 

management of soils has attracted ever-increasing scientific attention (Wall et al., 2015). Soil 

organisms and how they drive the processes that underlie essential ecosystem services have 

fascinated and challenged soil ecologists for decades (Powell et al., 2014). Their importance 

and complexity are increasingly arousing public and political interest in soil, such as that 

exemplified by the International Year of Soils in 2015 (Powell and Eisenhauer, 2015) and the 

annual celebration of World Soil Day (every December 5th, since 2002). Many policy makers 
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and land managers are realizing that soil ecological knowledge is key for sustainable 

environmental management, for the protection and conservation of soils, and for the nutrition 

and health of an increasing human population (Wall et al., 2015; Keith et al., 2016). However, 

despite these points, many knowledge gaps still exist and hinder researchers from making 

specific recommendations about soil conservation issues (Phillips et al., 2017) to maintain soil 

processes linked to ecosystem services under increasing human pressure and global change. 

As a consequence, soil ecology will remain an extremely important field of research into the 

future and requires a coordinated global effort to address the most important issues facing the 

sustainability of soils and gaps in soil ecological knowledge.

 

In this perspectives paper, we highlight what we have identified as the most crucial and 

emerging questions in soil ecological research. These research priorities were compiled based 

on an online survey of 32 editors of Pedobiologia – Journal of Soil Ecology. Thus, this list of 

questions may not be exhaustive and certainly contains some geographical biases (Fig. 1), but 

we are confident that they will serve as a constructive collection of ideas to target future 

research and facilitate progress in soil ecology.

Survey
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Thirty-two editors of Pedobiologia – Journal of Soil Ecology participated in the online survey 

in September and October of 2015. These editors work at universities and research centers in 

Europe, North America, Asia, and Australia (Fig. 1) and cover many different disciplines in 

soil ecology (Fig. 2). All of them provided responses to the following five questions/requests: 

1. Please list 5-10 outstanding research questions in soil ecology that, in your opinion, 

should be prioritized.

2. Which of these priorities are currently achievable given available technological or 

analytical resources?

3. For the achievable priorities, please state, in your opinion, why these have not been 

achieved.

4. For the priorities that are not currently achievable, what technological or analytical 

advances are required to facilitate research into these priorities?

5. Which research themes/keywords best represent the majority of your research?

Overall, we received 214 responses to question #1. Questions were screened, similar 

questions were merged, and then questions were grouped in the following four categories: (1) 

soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) 

global change and soil management, and (4) new directions. In total, 117 questions were 

identified, and we then asked all editors to vote for the most pressing questions to be 

addressed in each category. The questions that were supported by at least six of the 23 

respondents (>25%) to this second survey are presented below. Within each section, the 
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questions are proposed in order of decreasing support; all proposed questions and their level 

of support are provided in the supplementary online material. Responses to questions/requests 

2–5 of the initial survey are summarized in the sections “New directions” and “Conclusions”.

1. Soil biodiversity and biogeography

Currently, there is a focused and highly dynamic research effort to understand how 

biodiversity, in general, is changing and what is driving this change (Vellend et al., 2013; 

Dornelas et al., 2014; Wright et al., 2014; McGill, 2015; Gonzalez et al., 2016; Vellend et al., 

2017). Remarkably, information on soil biodiversity is lagging behind compared to the 

diversity of other groups of organisms, and the underlying databases and analyses are largely 

lacking comprehensive information pertaining to soil biodiversity (Phillips et al., 2017). This 

gap is probably due to limited and patchy data on soil biodiversity, particularly the absence of 

surveys with explicit temporal and spatial perspectives (Phillips et al., 2017), and difficulties 

comparing studies using different methodologies. Soil ecologists are still trying to determine 

the main drivers of soil biodiversity patterns (Fierer and Jackson, 2006; Powell et al., 2015a) 

and the fate of soil biodiversity in the face of global environmental change (Maestre et al., 

2015; Veresoglou et al., 2015). 

According to the Global Soil Biodiversity Atlas (2016), remarkably few species of soil taxa 
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have currently been described, with estimates ranging from <1% for protists, <1.5% for 

bacteria, <7% for fungi, 17% for Collembola, 23% for earthworms, to 55% in mites. These 

values are much less than what has been described for other taxa (e.g., ~88% of vascular 

plants have already been described). In addition, even when taxonomic information is 

available, much less is known about the functional roles of the great majority of these 

organisms within the ecosystems in which they occur (e.g., Janion-Scheepers et al., 2016). On 

top of this, bridging the vast gap in the spatial and temporal scales at which soil ecology is 

usually studied (e.g. small-scale biodiversity descriptions, short-term experiments in the 

laboratory) and scales at which ecosystems are managed in the real world (e.g. spanning from 

months to decades and from hectares to continents) remains a challenge (Jiang et al., 2016). 

Moreover, there has been little exploration of the roles that evolution has played in shaping 

soil biodiversity, and this has largely been biased towards a small subset of mutualistic or 

parasitic soil biota (Blaxter et al., 1998; Masson-Boivin et al., 2009; Tedersoo et al., 2010). 

As such, we are greatly limited in our abilities to address even the most basic questions, such 

as how much of the world’s biodiversity is found in soils, and answers to questions relating to 

the main driving factors behind microbial biogeography are highly context-dependent. 

Further, while we are starting to address the questions of whether communities of certain 

organisms assemble in fundamentally different ways in soils due to the massive interchange 

that occurs among these communities (Rillig et al., 2016), there may be additional 

consequences for the evolution of soil biota that are not being addressed (Antwis et al., 2017). 

The following section summarizes research questions that relate to the drivers of soil 
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biodiversity, the study of underlying evolutionary processes, and linkages to ecosystem 

responses at larger spatial scales. 

Drivers of soil biodiversity

1. How important are root and litter traits in determining the diversity and 

abundance of soil organisms?

2. Are there ecological assembly rules that determine community composition and 

structure, and what are the important mechanisms underlying these rules 

(dispersal limitation, species sorting, competition, facilitation, etc.)?

3. To what extent does niche differentiation occur for soil organisms, and what are 

the important mechanisms that contribute to this differentiation?

4. How do climatic conditions, parent material, vegetation type, and the 

distribution of mineral and organic surfaces in soil interact in shaping 

communities of soil biota?

5. What are the drivers of the phenology of soil organisms and processes, and how 

do we develop robust sampling strategies to effectively take these into account?

6. What consequences do dispersal limitations of soil organisms have for the 
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genetic structure and adaptability of populations of soil organisms?

7. How prevalent is endemism in soil biota?

Evolution

8. How frequent is horizontal exchange of genetic material among viruses, 

animals, plants, and microbes in soil, and does this differ from what is observed 

in aquatic systems?

9. What is the reason for the high frequency of parthenogenesis in some soil 

animal species and its absence in certain lineages, and what is its consequence 

for the evolution of these species?

10. How important is epigenetic regulation of gene expression for evolutionary and 

ecological processes in soil?

Scaling up

11. What is the degree of functional redundancy of soil communities, and does it 
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vary among ecosystem types?

12. Can biogeochemical process models be improved by including information 

regarding the soil organisms present?

13. Are there emergent properties at the landscape scale that arise from processes 

measured at much smaller scales, and can these properties be predicted from 

known soil ecological principles?

14. Are there general patterns that can be inferred from spatial associations between 

resources and consumers in soil?

15. Are genomic measures of functionality in soil useful predictors of ecosystem 

process rates and stability?

16. How large is the flux of greenhouse gases from soil environments, and what are 

the ecological controls of these quantities? 

2. Interactions among soil organisms and the functioning of 

ecosystems 

Despite their functional significance, trophic and non-trophic interactions among soil 

organisms are still poorly understood (Bardgett and van der Putten, 2014). There is increasing 

awareness of the need to explore species interactions in complex food webs to understand the 
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provisioning of multiple ecosystem services (Thompson et al., 2012, Hines et al., 2015; 

Soliveres et al., 2016). In this context, a perspective that encompasses the whole soil 

ecosystem, from soil aggregates and the interactions within (Maaß et al., 2015) to the 

interactions between aboveground-belowground food webs (Eisenhauer et al., 2015; Hines et 

al., 2015) and involving ecosystem engineers (Jones et al., 1994), is needed to connect 

different compartments.  

For trophic relationships, major advances can be made by better connecting the microbial 

utilization of plant-derived substrates to the movement of elements through faunal energy and 

nutrient pathways in soil, which are then linked to aboveground communities by plants and 

epigeic generalist predators (Scheu, 2001; Wardle et al., 2004; Scherber et al., 2010). Non-

trophic relationships also play important roles, such as during the chemical mediation of 

species interactions in soil (van Dam and Bouwmeester, 2016), and behaviors arising during 

quorum sensing and swarming by soil microorganisms with subsequent effects of soil biota 

on plant growth (Phillips et al., 2003). Both trophic and non-trophic relationships can serve to 

link above- and belowground compartments, such as plant defenses against herbivores and 

pathogens being influenced, partly, by changes in belowground plant chemistry (Johnson et 

al., 2016) or vice versa. Central to these phenomena is the observation that complex networks 

of interactions can have emergent properties that influence network and ecosystem stability 

(Rooney et al., 2006; Neutel et al., 2007; Hines et al. 2015). We know about trophic networks 

in soil (Moore et al., 2005), but mostly at low taxonomic resolution and relatively little with 

regards to networks of mutualists in soil and the specificity of mutualistic interactions. Also, 
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those networks are not well placed to determine whether the structure of mutualistic networks 

belowground can be inferred from knowledge generated during the study of aboveground 

mutualisms. 

The following section summarizes questions related to interactions within soil food webs, 

whether direct (through trophic interactions) or indirect (through chemical interactions or via 

effects on soil physical characteristics); how these interactions are linked to aboveground 

communities; and what the consequences are of soil biodiversity and interactions among soil 

organisms for ecosystem processes.  

Soil food webs and interactions therein  

17. How important is facilitation among soil organisms, and what are the 

underlying mechanisms (e.g., chemical/physical) of facilitative interactions?

18. What is the relative contribution of top-down versus bottom-up control within 

soil food webs, and does their importance vary among food web compartments?

19. How important are mutualists, parasites, and viral diseases in regulating the 

functioning and assembly of soil communities?

20. What is the role of info-chemicals for microbe–plant, microbe–animal, and 

animal–plant interactions in soil, and how are chemical signals transmitted 
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effectively in a humus-rich environment?

21. How important are interactions among soil microorganisms for energy flows in 

food webs relative to interactions among soil fauna?

22. Do saprotrophic microorganisms and soil animals compete for resources, and 

do these interactions affect energy flows and nutrient stoichiometry?

23. How temporally stable are soil microbial communities, in terms of both 

taxonomic and functional community structure, and which community members 

are active at any one time?

24. Does functional redundancy in the traits expressed by multiple species lead to 

predictable outcomes from species interactions in soil despite differences in 

species composition?

Linking ecosystem compartments

25. How can we link belowground to aboveground food webs in dynamic models? 

26. How does biodiversity in soil affect the diversity of other, connected 

environments in aquatic systems, and how important are temporarily flooded 

soils/sediments in linking diversity in these environments?
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27. Are microbial communities in plant and animal tissues aboveground, in the 

litter layer, and in the soil functionally linked?

28. Do effects of landscape composition (diversity and composition of different 

adjacent ecosystems) and fragmentation on aboveground taxa lead to cascading 

effects on soil biota?

29. Is the weak link between biodiversity above- and belowground due to soil 

organisms being limited more by resources arising from belowground sources 

(e.g., minerals arising from weathering) compared with aboveground sources 

(e.g., carbon from photosynthesis)? 

30. What is the relative contribution of above- and belowground plant residues for 

the nutrition of soil food webs?

Soil biodiversity–ecosystem functioning

31. Can ecosystem functions be predicted from the trait composition of soil 

communities? 

32. Does intraspecific genetic diversity contribute to variation in ecosystem 

functioning?

33. What are the tipping points, with respect to species losses or disturbances to 
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ecosystems, that result in loss of soil functions?

34. How do soil biodiversity and ecological interactions in soil contribute to 

multiple ecosystem services, such as carbon sequestration, disease suppression, 

and maintenance of aboveground biodiversity?

35. How active are rare species in soil ecosystems, and do they provide significant 

contributions toward ecosystem functions? 

36. What is the relative importance of biotic and abiotic drivers for decomposition 

and the subsequent cycling of elements in different soil types and ecosystems?

3. Global change and soil management

Anthropogenic environmental change is altering the composition and biodiversity of 

ecosystems at an unprecedented rate (Millennium Ecosystem Assessment, 2005; Ceballos et 

al., 2015) with poorly understood consequences for the functioning of ecosystems. While 

biodiversity–ecosystem functioning research has provided compelling evidence regarding the 

significance of biodiversity for the functioning of ecosystems (e.g., Hooper et al., 2005; 

Cardinale et al., 2012), the role of soil biodiversity (Bardgett and van der Putten, 2014) and 

the ways in which soil communities will change in response to altered environments 

(Veresoglou et al., 2015) are less clear (but see e.g., Blankinship et al., 2011 and Powell et al., 
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2015b). Environmental change may have substantial direct impacts on soil organisms and 

ecological processes that have consequences for soil fertility (Maestre et al., 2015), which 

may then result in feedbacks by which fertility shifts go on to impact those communities of 

soil organisms (Leff et al., 2015). How soils are physically and chemically managed has also 

been the focus of several studies, and while these types of environmental change are likely 

strong determinants of soil biodiversity and compositional shifts, the context-dependence 

(Deng et al., 2015; Hewins et al., 2015) and temporal nature (Venter et al., 2016; Eisenhauer, 

2016; Jiang et al., 2016) of these shifts are poorly understood. And with apparent increases in 

the uses of commercial microbial inoculants in soil during ecosystem management, there is a 

greater need to assess and mitigate any associated risks (Schwartz et al., 2006; Antunes et al., 

2009).

While the drivers of soil biodiversity and the ecosystem consequences are addressed in 

sections 1 and 2, respectively, questions related to the belowground consequences of global 

environmental change and implications for soil management are summarized in this section. 

Global environmental change and biotic exchange

37. What roles can soil biota play in ecosystem resistance and adaptation to global 
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change, and what are the mechanisms underlying these contributions?

38. Is soil biodiversity currently undergoing an extinction crisis and, if so, to what 

extent is soil biodiversity being lost?

39. What is the role of soil organisms in plant range expansion, and to what degree 

can soil organisms migrate to favorable regions in response to climate change? 

40. How resistant and resilient are ecosystems to changes in the composition and 

structure of soil communities?

41. What are the effects of land use change on trait composition and species 

composition of soil communities?

42. What is the relative importance of current versus historical processes in shaping 

species composition of belowground communities?

Managing soils for ecosystem service provisioning

43. How feasible is it to restore extensively degraded soil ecosystems to a 

functional state, and, if so, what roles can soil biota and ecological theory play 

in developing best practices for doing so?

44. What is the status and future of the generation of 'designer soils' that can 
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provide a selected suite of ecosystem services in new (e.g., terraforming) or 

existing (e.g., restoration) environments? 

45. Can we alter soil microbial communities to impart desired characteristics to 

plant products used in food, beverage, and materials production? 

46. What advances in our understanding of soil ecology can lead to significant 

increases in agricultural production and sustainability?

47. How can research and knowledge from soil ecologists be better integrated with 

the social and economic sciences? 

48. Are practices used in plant breeding for pest and disease resistance 

unintentionally selecting against mutually beneficial symbioses with microbes?

49. Can the value of soil quality and its effects on ecosystem services be 

quantified? 

4. New directions

Many of the questions posed in response to the survey took the form of a ‘wish list’ for soil 

ecologists or a list of challenges that the discipline is facing from a practical perspective. 

While the responses indicated that there were many issues that would need to be addressed to 

ensure progress on the questions that were posed, the general mood was that most priorities 
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were achievable. In total, 72% of the priorities raised were identified as achievable based on 

available technologies and analytical resources. However, in the responses, there was much 

more of a focus on the need for broad collaboration, stable funding for research, and 

innovation by soil ecologists in the ways that the above problems are thought about. Many 

respondents cited a greater need for coordinated approaches to research, engagement with the 

public and industry, and ensuring resources are available for advances to be made in the 

future. For instance, many open questions cannot be answered on a global scale because the 

necessary data is not available in central databases (Phillips et al., 2017), but several soil 

ecologists already have started initiatives to establish such databases, such as on soil 

biodiversity (Burkhardt et al., 2014; Ramirez et al., 2015; Cameron et al., 2016) or trait data 

(Pey et al., 2014; Nguyen et al., 2016). The rapid development and advancement of DNA-

based analyses of soil biota is only one prominent example that offers new opportunities to 

disentangle links of biodiversity/species assemblages within or between different organization 

levels, such as among clades, functional groups, or trophic levels. However, merging the 

respective data in global databases in a way that allows straightforward data extraction and 

usage will require big collaborative and interdisciplinary efforts.

The respective list of questions is summarized in this section and may guide future research 

activities proposed above. Our aim here is to reflect current attitudes about the advances that 

need to be made to progress soil ecology as a discipline. Although some, or even all, of the 

topics below might not sound entirely new to certain soil ecology practitioners or to 
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specialists developing new techniques, nor be issues that are only important to soil ecologists, 

we think that a broader discussion on these topics would be beneficial to the wider community 

of soil ecologists. 

New techniques and measurements

50. Can we better integrate soil fauna into high-throughput analyses of soil 

biodiversity, perhaps through more effective approaches to sampling 

environmental DNA from soil and better designed primers for eukaryotic 

organisms?

51. How do we effectively characterize functional diversity and capacity in soil 

ecosystems instead of relying mainly on DNA sequencing?

52. Can we develop a comprehensive index of soil health that is a reliable and 

informative measure of soil quality?

53. Is it possible to visualize, in situ, soil processes (soil aggregate formation, 

interactions between biota etc.) in space and time at a level of resolution at 

which these processes are occurring?

54. Can we take a trait-based approach to biodiversity in soil ecology, and what 
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would that look like?

55. Are there particular soil taxa that can be used as an indicator to assess the 

degree of impact associated with particular environmental stressors and 

perturbations?

56. How can we manipulate microbial communities to evaluate their functional 

roles without substantially altering the abiotic environment?

New ways of thinking and working

57. Can we establish long-term soil ecological observatories to track important 

issues, such as biodiversity loss and gradual environmental change?

58. How can we encourage open data sharing among soil ecologists (e.g., in open 

databases) in a way that ensures progress can be made without concerns arising 

with respect to the unethical use of these data?

59. Can we reverse the decline in taxonomic studies and recruit a new generation of 

taxonomists that are capable of integrating morphological evidence with an 

informed use of solid molecular databases?

60. How do we place soil biodiversity within a conservation perspective given the 

challenges we face with this 'enigmatic' system, such as extremely high 
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diversity with much of it being cryptic or undescribed?

61. How can the public be engaged to appreciate the value of soil biodiversity?

62. How can we ensure that emerging soil ecologists receive the right training to 

address the questions identified in this paper?

63. Can we prevent soil ecology as a discipline from becoming too focused on 

technological tools and ensure an appropriate emphasis on addressing 

fundamental and applied questions in soil ecology?

Conclusions

The present survey identified sixty-three prioritized questions that may serve as a guide for 

soil ecological research. While some of the barriers to progress were technological in nature, 

many respondents cited a greater need for elements that can only be achieved with substantial 

leadership within and goodwill among members of the soil ecology research community. 

These include reversing the loss of important taxonomic expertise for many, if not all, groups 

of soil organisms; negotiating meaningful collaborative endeavors among researchers across 

many institutions in multiple countries; and securing funding for investigating the relevance 

of soil ecology to processes at large spatial and temporal scales. Global efforts such as the 
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Global Soil Biodiversity Initiative (https://globalsoilbiodiversity.org/) suggest that this could 

be possible and may represent a starting point from which to build this concerted effort to 

address these questions. In addition, while the sample represented soil ecological researchers 

from 15 countries, there are large regions that still need to be canvassed, such as South and 

Central America, Africa, and several regions in Asia (Fig. 1), to ensure appropriate priorities 

are put in place for soil ecological research. Tackling the pressing questions listed above will 

not only be essential to advance basic soil ecological research, but will also generate crucial 

information for land managers and decision makers for a sustainable treatment of the soils 

that humankind relies on. 
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Figure

Figure 1. Geographic location of home institutes of the 32 Pedobiologia editors who 

participated in the present survey. In the map, countries represented by one or more editors 

are given in dark gray. In the table, different countries are given in alphabetical order, and 

countries represented by more than one editor are highlighted with different shades of gray.

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888



Eisenhauer et al. | Priorities for research in soil ecology

33

 Figure 2. The 32 Pedobiologia - Journal of Soil Ecology editors who participated in the 

present survey represent different disciplines in soil ecology (multiple entries per editor were 

possible).
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Country # Editors
Australia 3
Canada 3
China 1
Finland 1
France 1
Germany 6
Ireland 1
Italy 1
Japan 1
Norway 1
Russia 1
Sweden 1
The Netherlands 3
United Kingdom 4
USA 4
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Highlights

 There still are fundamental aspects that need to be better understood in soil ecology. 
 Here we highlight major knowledge gaps that should be prioritized in soil ecological research. 
 Research priorities were compiled based on an online survey of 32 Pedobiologia editors. 
 Major themes are: (1) soil biodiversity and biogeography, (2) interactions and the functioning 

of ecosystems, (3) global change and soil management, and (4) new directions. 
 There is a need for substantial leadership and goodwill among members of the soil ecology 

research community



Supplementary Table 1. All questions identified by the 32 respondents in the initial survey, after revising to combine similar questions and grouping into categories, and the number of votes for each question by the 23 respondents to the follow-up survey.
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4. New Directions
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Subsection Votes in support

Drivers of soil biodiversity 15

Drivers of soil biodiversity 14

Drivers of soil biodiversity 11

Drivers of soil biodiversity 11

Drivers of soil biodiversity 11

Drivers of soil biodiversity 10

Drivers of soil biodiversity 6

Drivers of soil biodiversity 3

Evolution 15

Evolution 13

Evolution 7

Evolution 5

Evolution 3

Evolution 2

Scaling up 12

Scaling up 12

Scaling up 11

Scaling up 10

Scaling up 8

Scaling up 7

Scaling up 5

Linking ecosystem compartments 17

Linking ecosystem compartments 13

Linking ecosystem compartments 11

Linking ecosystem compartments 10

Linking ecosystem compartments 6

Linking ecosystem compartments 6

Linking ecosystem compartments 4

Linking ecosystem compartments 3

Linking ecosystem compartments 3

Soil biodiversity and ecosystem functioning 17

Soil biodiversity and ecosystem functioning 14

Soil biodiversity and ecosystem functioning 14

Soil biodiversity and ecosystem functioning 8

Soil biodiversity and ecosystem functioning 7

Supplementary Table 1. All questions identified by the 32 respondents in the initial survey, after revising to combine similar questions and grouping into categories, and the number of votes for each question by the 23 respondents to the follow-up survey.



Soil biodiversity and ecosystem functioning 6

Soil biodiversity and ecosystem functioning 4

Soil biodiversity and ecosystem functioning 3

Soil biodiversity and ecosystem functioning 3

Soil biodiversity and ecosystem functioning 2

Soil biodiversity and ecosystem functioning 2

Soil biodiversity and ecosystem functioning 2

Soil biodiversity and ecosystem functioning 0

Soil food webs and interactions therein 14

Soil food webs and interactions therein 10

Soil food webs and interactions therein 10

Soil food webs and interactions therein 9

Soil food webs and interactions therein 8

Soil food webs and interactions therein 8

Soil food webs and interactions therein 8

Soil food webs and interactions therein 7

Soil food webs and interactions therein 5

Soil food webs and interactions therein 4

Soil food webs and interactions therein 4

Soil food webs and interactions therein 2

Soil food webs and interactions therein 1

Global environmental change and biotic exchange 16

Global environmental change and biotic exchange 11

Global environmental change and biotic exchange 11

Global environmental change and biotic exchange 6

Global environmental change and biotic exchange 6

Global environmental change and biotic exchange 6

Global environmental change and biotic exchange 5

Global environmental change and biotic exchange 5

Global environmental change and biotic exchange 5

Global environmental change and biotic exchange 4

Global environmental change and biotic exchange 4

Global environmental change and biotic exchange 3

Global environmental change and biotic exchange 3

Global environmental change and biotic exchange 2

Global environmental change and biotic exchange 0

Managing soils for ecosystem service provisioning 12

Managing soils for ecosystem service provisioning 11

Managing soils for ecosystem service provisioning 11

Managing soils for ecosystem service provisioning 9



Managing soils for ecosystem service provisioning 8

Managing soils for ecosystem service provisioning 7

Managing soils for ecosystem service provisioning 6

Managing soils for ecosystem service provisioning 5

Managing soils for ecosystem service provisioning 4

Managing soils for ecosystem service provisioning 3

Managing soils for ecosystem service provisioning 3

Managing soils for ecosystem service provisioning 3

Managing soils for ecosystem service provisioning 2

Managing soils for ecosystem service provisioning 2

Managing soils for ecosystem service provisioning 1

Managing soils for ecosystem service provisioning 1

New techniques and measurements 13

New techniques and measurements 12

New techniques and measurements 8

New techniques and measurements 8

New techniques and measurements 7

New techniques and measurements 6

New techniques and measurements 6

New techniques and measurements 5

New techniques and measurements 4

New techniques and measurements 4

New techniques and measurements 4

New techniques and measurements 2

New techniques and measurements 0

New ways of thinking and working 14

New ways of thinking and working 12

New ways of thinking and working 10

New ways of thinking and working 9

New ways of thinking and working 6

New ways of thinking and working 6

New ways of thinking and working 6

New ways of thinking and working 4

New ways of thinking and working 4

New ways of thinking and working 4

New ways of thinking and working 3

New ways of thinking and working 3

New ways of thinking and working 2

New ways of thinking and working 1

New ways of thinking and working 1

New ways of thinking and working 1



New ways of thinking and working 0



Question

How important are root and litter traits in determining the diversity and abundance of soil organisms?

Are there ecological assembly rules that determine community composition and structure, and what are the important mechanisms underlying these rules (dispersal limitation, species sorting, competition, facilitation, etc.)?

To what extent does niche differentiation occur for soil organisms and what are the important mechanisms that contribute to this differentiation?

How do climatic conditions, parent material, vegetation type, and the distribution of mineral and organic surfaces in soil interact in shaping communities of soil biota?

What are the drivers of the phenology of soil organisms and processes and how do we develop robust sampling strategies to effectively take these into account?

What consequences do dispersal limitations of soil organisms have for the genetic structure and adaptability of populations of soil organisms?

How prevalent is endemism in soil biota?

What are the main driving factors of microbial biogeography?

How frequent is horizontal exchange of genetic material among viruses, animals, plants, and microbes in soil, and does this differ from what is observed in aquatic systems?

What is the reason for the high frequency of parthenogenesis in some soil animal species and its absence in certain lineages, and what is its consequence for the evolution of these species?

How important is epigenetic regulation of gene expression for evolutionary and ecological processes in soil?

What special adaptations were required to evolve prior to colonization of terrestrial systems by soil microbes and invertebrates?

How does the diversity of reproductive systems in soil organisms compare with that of organisms existing aboveground?

Are evolutionary processes in soil different from those above the ground?

What is the degree of functional redundancy of soil communities and does it vary among ecosystem types?

Can biogeochemical process models be improved by including information regarding the soil organisms present?

Are there emergent properties at the landscape scale that arise from processes measured at much smaller scales, and can these properties be predicted from known soil ecological principles?

Are there general patterns that can be inferred from spatial associations between resources and consumers in soil?

Are genomic measures of functionality in soil useful predictors of ecosystem process rates and stability?

How large is the flux of greenhouse gases from soil environments and what are the ecological controls of these quantities? 

What is the fate of high molecular weight phenolic compounds in different soil types under different environmental conditions?

How can we link belowground to aboveground food webs in dynamic models? 

How does biodiversity in soil affect the diversity of other, connected environments in aquatic systems, and how important are temporarily flooded soils/sediments in linking diversity in these environments?

Are microbial communities in plant and animal tissues aboveground, in the litter layer, and in the soil functionally linked?

Do effects of landscape composition (diversity and composition of different adjacent ecosystems) and fragmentation on aboveground taxa lead to cascading effects on soil biota?

Is the weak link between biodiversity above- and below-ground due to soil organisms being limited more by resources arising from belowground sources (e.g., minerals arising from weathering) compared with aboveground sources (e.g., carbon from photosynthesis)? 

What is the relative contribution of above- and belowground plant residues for the nutrition of soil food webs?

Are networks of mutualisms and trophic interactions belowground fundamentally different from those aboveground, and why?

How important are organisms other than plants in controlling energy and nutrient flows between aboveground and belowground food webs?

To what extent does the spatial turnover in soil animal and microbial communities differ compared with that observed for aboveground animals and microbes? 

Can ecosystem functions be predicted from the trait composition of soil communities? 

Does intraspecific genetic diversity contribute to variation in ecosystem functioning?

What are the tipping points, with respect to species losses or disturbances to ecosystems, that result in loss of soil functions?

How do soil biodiversity and ecological interactions in soil contribute to multiple ecosystem services such as carbon sequestration, disease suppression, and maintenance of aboveground biodiversity?

How active are rare species in soil ecosystems and do they provide significant contributions toward ecosystem functions? 

Supplementary Table 1. All questions identified by the 32 respondents in the initial survey, after revising to combine similar questions and grouping into categories, and the number of votes for each question by the 23 respondents to the follow-up survey.



What is the relative importance of biotic and abiotic drivers for decomposition and the subsequent cycling of elements in different soil types and ecosystems?

What are the relative interactive contributions of bacteria, fungi, protists, viruses, and animals to soil ecosystem functioning?

Do the outcomes of community assembly processes affect the variability of processes linked to ecosystem services?

What are the contributions of microbial-mediated weathering in the critical zone and other soil biotic processes during pedogenesis and organic matter formation?

What is the relationship between soil carbon and nitrogen dynamics and plant life form, soil type, and soil food web structure  ? 

To what extent is the functioning of soil biota affected by the composition of the soil atmosphere (e.g. organic volatiles, air humidity)?

What are the mechanisms by which mycorrhizal fungi interact with heterotrophic fungi and what are the consequences for soil organic matter turnover?

How do we link functional aspects of soil to population dynamics of soil organisms?

How important is facilitation among soil organisms, and what are the underlying mechanisms (e.g., chemical/physical) of facilitative interactions?

What is the relative contribution of top-down versus bottom-up control within soil food webs, and does their importance vary among food web compartments?

How important are mutualists, parasites, and viral diseases in regulating the functioning and assembly of soil communities?

What is the role of infochemicals for microbe-plant, microbe-animal, and animal-plant interactions in soil, and how are chemical signals effectively transmitted in a humus-rich environment?

How important are interactions among soil microorganisms for energy flows in food webs relative to interactions among soil fauna?

Do saprotrophic microorganisms and soil animals compete for resources, and do these interactions affect energy flows and nutrient stoichiometry?

How temporally stable are soil microbial communities, in terms of both taxonomic and functional community structure, and which community members are active at any one time?

Does functional redundancy in the traits expressed by multiple species lead to predictable outcomes from species interactions in soil despite differences in species composition?

Is competition a dominant regulating factor in soil animal communities?    

How does resilience vary among trophic levels and how does this variation influence nutrient stoichiometry?   

To what extent is plant secondary metabolite production driven by rhizosphere interactions?

How do soil organisms of different body size interact within soil food webs? 

What is the extent of the plant extended phenotype and do soil organisms also have extended phenotypes?

What roles can soil biota play in ecosystem resistance and adaptation to global change, and what are the mechanisms underlying these contributions?

Is soil biodiversity currently undergoing an extinction crisis and, if so, to what extent is soil biodiversity being lost?

What is the role of soil organisms in plant range expansion and to what degree can soil organisms migrate to favorable regions in response to climate change? 

How resistant and resilient are ecosystems to changes in the composition and structure of soil communities?

What are the effects of land use change on trait composition and species composition of soil communities?

What is the relative importance of current vs. historic processes in shaping species composition of belowground communities?

How can we conduct realistic experiments to study the effects of multiple, temporally variable perturbations on soil communities?

Are microplastics harmful in soil ecosystems?

To what extent can differences in life history and other traits of soil fauna explain current responses and predict future effects of climate change?

How much carbon can be stored in the world’s soils and how can this be maximized to attenuate increasing atmospheric CO2?

What are the important mechanisms by which non-native species introductions impact soil ecological processes, and are the effects different for invasive soil biota than for invasive plants and other aboveground organisms?

What are the long-term fates and ecological consequences of xenobiotic compounds in soil, and how do environmental conditions affect these fates and consequences?

What are the major limitations to soil fertility and agricultural production in the medium- to long-term?

What are the molecular and physiological mechanisms that allow acclimation of soil biota to pollution?

Do microbes inhabiting mineral surfaces respond differently to perturbation than those found elsewhere in the soil (for example, due to a greater capacity to acquire nutrients through mineral weathering)?

How feasible is it to restore extensively degraded soil ecosystems to a functional state and, if so, what roles can soil biota and ecological theory play in developing best practices for doing so?

What is the status and future of the generation of 'designer soils' that can provide a selected suite of ecosystem services in new (e.g., terraforming) or existing (e.g., restoration) environments? 

Can we alter soil microbial communities to impart desired characteristics to plant products used in food, beverage, and materials production? 

What advances in our understanding of soil ecology can lead to significant increases in agricultural production and sustainability?



How can research and knowledge from soil ecologists be better integrated with the social and economic sciences? 

Are practices used in plant breeding for pest and disease resistance unintentionally selecting against mutually beneficial symbioses with microbes?

Can the value of soil quality and its effects on ecosystem services be quantified? 

Can productivity gains be achieved by improving the abilities of plants to selectively interact with particular soil organisms in the rhizosphere?

How can we better exploit soil ecological interactions during ecosystem management and when tackling global challenges?

Can we manage soil carbon sequestration processes through the use of principles learned from soil ecological research?

Is it possible to manage soils sustainably, from either an environmental or a financial perspective, given current and future practices in resource consumption by humans? 

Under what circumstances is the addition of biochar and other amendments beneficial to soil fertility and biology?

Can continued advances in our understanding of symbiotic and endophytic microorganisms further reduce the need for synthetic N fertilizers?

Are commercial inoculants as effective as indigenous soil biota in achieving desirable outcomes? 

Are the ecological means of protecting ecosystems from soil pests feasible?

Are invasive practices used in managed ecosystems ultimately incompatible with achieving benefits from soil ecological processes?

Can we better integrate soil fauna into high-throughput analyses of soil biodiversity, perhaps through more effective approaches to sampling environmental DNA from soil and better designed primers for eukaryotic organisms?

How do we effectively characterize functional diversity and capacity in soil ecosystems instead of relying mainly on DNA sequencing?

Can we develop a comprehensive index of soil health that is a reliable and informative measure of soil quality?

Is it possible to visualize, in situ, soil processes (soil aggregate formation, interactions between biota etc.) in space and time at a level of resolution at which these processes are occurring?

Can we take a trait-based approach to biodiversity in soil ecology, and what would that look like?

Are there particular soil taxa that can be used as an indicator to assess the degree of impact associated with particular environmental stressors and perturbations?

How can we manipulate microbial communities to evaluate their functional roles without substantially altering the abiotic environment?

Can we develop methodologies that allow the simultaneous identification of organisms and characterisation of their traits from diverse environments? 

Can we develop more effective methods for assessing population and community structure for soil biota that better reflect an actual species concept?

How can we exploit modern molecular methods to resolve issues such as the species concept for taxa that do not exhibit sexual reproduction, or the drivers of population dynamics for modular organisms?

How reliable are our molecular markers at differentiating among different microbial taxa?

What are the key measurements that could be made to link cellular and organismic responses of soil biota and their activities to processes that occur at the scale of entire ecosystems?

Are there more meaningful experimental model organisms (besides Caenorhabditis elegans and Tertahymena thermophila) that would help us build quantitative models accounting for the high biodiversity in soils, extensive interplay between trophic and non-trophic interactions, and the fractal nature of the soil matrix?

Can we establish long-term soil ecological observatories to track important issues such as biodiversity loss and gradual environmental change?

How can we encourage open data sharing among soil ecologists (e.g. in open databases) in a way that ensures progress can be made without concerns arising with respect to the unethical use of these data?

Can we reverse the decline in taxonomic studies and recruit a new generation of taxonomists that are capable of integrating morphological evidence with an informed use of solid molecular databases?

How do we place soil biodiversity within a conservation perspective given the challenges we face with this 'enigmatic' system, such as extremely high diversity with much of it being cryptic or undescribed?

How can the public be engaged to appreciate the value of soil biodiversity?

How can we ensure that emerging soil ecologists receive the right training to address the questions identified in this paper?

Can we prevent soil ecology as a discipline from becoming too focused on technological tools and ensure an appropriate emphasis on addressing fundamental and applied questions in soil ecology?

Can we use genomic information obtained from the environment to culture large numbers of difficult-to-isolate organisms from these samples? 

Can we make substantial advances in our understanding of soil ecology through quantitative modelling?

What types of experiments can be established to look at multiple and interactive effects of important drivers of global change?

Can we focus more research on understudied and 'non-charismatic' soil biota?

How can we encourage soil biologists to work with soil chemists to better understand the processes that go into the formation of recalcitrant organic matter?

How do we convince funding bodies and industry that long-term, large-scale, and secure funding is needed to address these challenges?

Is it reasonable to expect that individuals from different research organizations and supported by different funding bodies can work together in an efficient and meaningful way given constraints that are put upon those researchers by those agencies?

How can we facilitate the technological advances that are required to simultaneously study geochemical and biochemical processes on mineral and organic surfaces?

How can we ensure that ecologists working above- and below-ground, as well as ecologists more generally collaborate effectively to maximize knowledge gained from individual studies?



Can we have a "meeting of the minds" on halting the rapid decline of soil biological fertility worldwide, between scientists and corporate interests?



Supplementary Table 1. All questions identified by the 32 respondents in the initial survey, after revising to combine similar questions and grouping into categories, and the number of votes for each question by the 23 respondents to the follow-up survey.

How important are root and litter traits in determining the diversity and abundance of soil organisms?

Are there ecological assembly rules that determine community composition and structure, and what are the important mechanisms underlying these rules (dispersal limitation, species sorting, competition, facilitation, etc.)?

To what extent does niche differentiation occur for soil organisms and what are the important mechanisms that contribute to this differentiation?

How do climatic conditions, parent material, vegetation type, and the distribution of mineral and organic surfaces in soil interact in shaping communities of soil biota?

What are the drivers of the phenology of soil organisms and processes and how do we develop robust sampling strategies to effectively take these into account?

What consequences do dispersal limitations of soil organisms have for the genetic structure and adaptability of populations of soil organisms?

How frequent is horizontal exchange of genetic material among viruses, animals, plants, and microbes in soil, and does this differ from what is observed in aquatic systems?

What is the reason for the high frequency of parthenogenesis in some soil animal species and its absence in certain lineages, and what is its consequence for the evolution of these species?

How important is epigenetic regulation of gene expression for evolutionary and ecological processes in soil?

What special adaptations were required to evolve prior to colonization of terrestrial systems by soil microbes and invertebrates?

How does the diversity of reproductive systems in soil organisms compare with that of organisms existing aboveground?

What is the degree of functional redundancy of soil communities and does it vary among ecosystem types?

Can biogeochemical process models be improved by including information regarding the soil organisms present?

Are there emergent properties at the landscape scale that arise from processes measured at much smaller scales, and can these properties be predicted from known soil ecological principles?

Are there general patterns that can be inferred from spatial associations between resources and consumers in soil?

Are genomic measures of functionality in soil useful predictors of ecosystem process rates and stability?

How large is the flux of greenhouse gases from soil environments and what are the ecological controls of these quantities? 

What is the fate of high molecular weight phenolic compounds in different soil types under different environmental conditions?

How does biodiversity in soil affect the diversity of other, connected environments in aquatic systems, and how important are temporarily flooded soils/sediments in linking diversity in these environments?

Are microbial communities in plant and animal tissues aboveground, in the litter layer, and in the soil functionally linked?

Do effects of landscape composition (diversity and composition of different adjacent ecosystems) and fragmentation on aboveground taxa lead to cascading effects on soil biota?

Is the weak link between biodiversity above- and below-ground due to soil organisms being limited more by resources arising from belowground sources (e.g., minerals arising from weathering) compared with aboveground sources (e.g., carbon from photosynthesis)? 

What is the relative contribution of above- and belowground plant residues for the nutrition of soil food webs?

Are networks of mutualisms and trophic interactions belowground fundamentally different from those aboveground, and why?

How important are organisms other than plants in controlling energy and nutrient flows between aboveground and belowground food webs?

To what extent does the spatial turnover in soil animal and microbial communities differ compared with that observed for aboveground animals and microbes? 

Can ecosystem functions be predicted from the trait composition of soil communities? 

Does intraspecific genetic diversity contribute to variation in ecosystem functioning?

What are the tipping points, with respect to species losses or disturbances to ecosystems, that result in loss of soil functions?

How do soil biodiversity and ecological interactions in soil contribute to multiple ecosystem services such as carbon sequestration, disease suppression, and maintenance of aboveground biodiversity?

How active are rare species in soil ecosystems and do they provide significant contributions toward ecosystem functions? 



What is the relative importance of biotic and abiotic drivers for decomposition and the subsequent cycling of elements in different soil types and ecosystems?

What are the relative interactive contributions of bacteria, fungi, protists, viruses, and animals to soil ecosystem functioning?

Do the outcomes of community assembly processes affect the variability of processes linked to ecosystem services?

What are the contributions of microbial-mediated weathering in the critical zone and other soil biotic processes during pedogenesis and organic matter formation?

What is the relationship between soil carbon and nitrogen dynamics and plant life form, soil type, and soil food web structure  ? 

To what extent is the functioning of soil biota affected by the composition of the soil atmosphere (e.g. organic volatiles, air humidity)?

What are the mechanisms by which mycorrhizal fungi interact with heterotrophic fungi and what are the consequences for soil organic matter turnover?

How do we link functional aspects of soil to population dynamics of soil organisms?

How important is facilitation among soil organisms, and what are the underlying mechanisms (e.g., chemical/physical) of facilitative interactions?

What is the relative contribution of top-down versus bottom-up control within soil food webs, and does their importance vary among food web compartments?

How important are mutualists, parasites, and viral diseases in regulating the functioning and assembly of soil communities?

What is the role of infochemicals for microbe-plant, microbe-animal, and animal-plant interactions in soil, and how are chemical signals effectively transmitted in a humus-rich environment?

How important are interactions among soil microorganisms for energy flows in food webs relative to interactions among soil fauna?

Do saprotrophic microorganisms and soil animals compete for resources, and do these interactions affect energy flows and nutrient stoichiometry?

How temporally stable are soil microbial communities, in terms of both taxonomic and functional community structure, and which community members are active at any one time?

Does functional redundancy in the traits expressed by multiple species lead to predictable outcomes from species interactions in soil despite differences in species composition?

Is competition a dominant regulating factor in soil animal communities?    

How does resilience vary among trophic levels and how does this variation influence nutrient stoichiometry?   

To what extent is plant secondary metabolite production driven by rhizosphere interactions?

How do soil organisms of different body size interact within soil food webs? 

What is the extent of the plant extended phenotype and do soil organisms also have extended phenotypes?

What roles can soil biota play in ecosystem resistance and adaptation to global change, and what are the mechanisms underlying these contributions?

Is soil biodiversity currently undergoing an extinction crisis and, if so, to what extent is soil biodiversity being lost?

What is the role of soil organisms in plant range expansion and to what degree can soil organisms migrate to favorable regions in response to climate change? 

How resistant and resilient are ecosystems to changes in the composition and structure of soil communities?

What are the effects of land use change on trait composition and species composition of soil communities?

What is the relative importance of current vs. historic processes in shaping species composition of belowground communities?

How can we conduct realistic experiments to study the effects of multiple, temporally variable perturbations on soil communities?

To what extent can differences in life history and other traits of soil fauna explain current responses and predict future effects of climate change?

How much carbon can be stored in the world’s soils and how can this be maximized to attenuate increasing atmospheric CO2?

What are the important mechanisms by which non-native species introductions impact soil ecological processes, and are the effects different for invasive soil biota than for invasive plants and other aboveground organisms?

What are the long-term fates and ecological consequences of xenobiotic compounds in soil, and how do environmental conditions affect these fates and consequences?

What are the major limitations to soil fertility and agricultural production in the medium- to long-term?

What are the molecular and physiological mechanisms that allow acclimation of soil biota to pollution?

Do microbes inhabiting mineral surfaces respond differently to perturbation than those found elsewhere in the soil (for example, due to a greater capacity to acquire nutrients through mineral weathering)?

How feasible is it to restore extensively degraded soil ecosystems to a functional state and, if so, what roles can soil biota and ecological theory play in developing best practices for doing so?

What is the status and future of the generation of 'designer soils' that can provide a selected suite of ecosystem services in new (e.g., terraforming) or existing (e.g., restoration) environments? 

Can we alter soil microbial communities to impart desired characteristics to plant products used in food, beverage, and materials production? 

What advances in our understanding of soil ecology can lead to significant increases in agricultural production and sustainability?



How can research and knowledge from soil ecologists be better integrated with the social and economic sciences? 

Are practices used in plant breeding for pest and disease resistance unintentionally selecting against mutually beneficial symbioses with microbes?

Can the value of soil quality and its effects on ecosystem services be quantified? 

Can productivity gains be achieved by improving the abilities of plants to selectively interact with particular soil organisms in the rhizosphere?

How can we better exploit soil ecological interactions during ecosystem management and when tackling global challenges?

Can we manage soil carbon sequestration processes through the use of principles learned from soil ecological research?

Is it possible to manage soils sustainably, from either an environmental or a financial perspective, given current and future practices in resource consumption by humans? 

Under what circumstances is the addition of biochar and other amendments beneficial to soil fertility and biology?

Can continued advances in our understanding of symbiotic and endophytic microorganisms further reduce the need for synthetic N fertilizers?

Are commercial inoculants as effective as indigenous soil biota in achieving desirable outcomes? 

Are the ecological means of protecting ecosystems from soil pests feasible?

Are invasive practices used in managed ecosystems ultimately incompatible with achieving benefits from soil ecological processes?

Can we better integrate soil fauna into high-throughput analyses of soil biodiversity, perhaps through more effective approaches to sampling environmental DNA from soil and better designed primers for eukaryotic organisms?

How do we effectively characterize functional diversity and capacity in soil ecosystems instead of relying mainly on DNA sequencing?

Can we develop a comprehensive index of soil health that is a reliable and informative measure of soil quality?

Is it possible to visualize, in situ, soil processes (soil aggregate formation, interactions between biota etc.) in space and time at a level of resolution at which these processes are occurring?

Can we take a trait-based approach to biodiversity in soil ecology, and what would that look like?

Are there particular soil taxa that can be used as an indicator to assess the degree of impact associated with particular environmental stressors and perturbations?

How can we manipulate microbial communities to evaluate their functional roles without substantially altering the abiotic environment?

Can we develop methodologies that allow the simultaneous identification of organisms and characterisation of their traits from diverse environments? 

Can we develop more effective methods for assessing population and community structure for soil biota that better reflect an actual species concept?

How can we exploit modern molecular methods to resolve issues such as the species concept for taxa that do not exhibit sexual reproduction, or the drivers of population dynamics for modular organisms?

How reliable are our molecular markers at differentiating among different microbial taxa?

What are the key measurements that could be made to link cellular and organismic responses of soil biota and their activities to processes that occur at the scale of entire ecosystems?

Are there more meaningful experimental model organisms (besides Caenorhabditis elegans and Tertahymena thermophila) that would help us build quantitative models accounting for the high biodiversity in soils, extensive interplay between trophic and non-trophic interactions, and the fractal nature of the soil matrix?

Can we establish long-term soil ecological observatories to track important issues such as biodiversity loss and gradual environmental change?

How can we encourage open data sharing among soil ecologists (e.g. in open databases) in a way that ensures progress can be made without concerns arising with respect to the unethical use of these data?

Can we reverse the decline in taxonomic studies and recruit a new generation of taxonomists that are capable of integrating morphological evidence with an informed use of solid molecular databases?

How do we place soil biodiversity within a conservation perspective given the challenges we face with this 'enigmatic' system, such as extremely high diversity with much of it being cryptic or undescribed?

How can the public be engaged to appreciate the value of soil biodiversity?

How can we ensure that emerging soil ecologists receive the right training to address the questions identified in this paper?

Can we prevent soil ecology as a discipline from becoming too focused on technological tools and ensure an appropriate emphasis on addressing fundamental and applied questions in soil ecology?

Can we use genomic information obtained from the environment to culture large numbers of difficult-to-isolate organisms from these samples? 

Can we make substantial advances in our understanding of soil ecology through quantitative modelling?

What types of experiments can be established to look at multiple and interactive effects of important drivers of global change?

Can we focus more research on understudied and 'non-charismatic' soil biota?

How can we encourage soil biologists to work with soil chemists to better understand the processes that go into the formation of recalcitrant organic matter?

How do we convince funding bodies and industry that long-term, large-scale, and secure funding is needed to address these challenges?

Is it reasonable to expect that individuals from different research organizations and supported by different funding bodies can work together in an efficient and meaningful way given constraints that are put upon those researchers by those agencies?

How can we facilitate the technological advances that are required to simultaneously study geochemical and biochemical processes on mineral and organic surfaces?

How can we ensure that ecologists working above- and below-ground, as well as ecologists more generally collaborate effectively to maximize knowledge gained from individual studies?



Can we have a "meeting of the minds" on halting the rapid decline of soil biological fertility worldwide, between scientists and corporate interests?



Are there ecological assembly rules that determine community composition and structure, and what are the important mechanisms underlying these rules (dispersal limitation, species sorting, competition, facilitation, etc.)?

How do climatic conditions, parent material, vegetation type, and the distribution of mineral and organic surfaces in soil interact in shaping communities of soil biota?

What are the drivers of the phenology of soil organisms and processes and how do we develop robust sampling strategies to effectively take these into account?

How frequent is horizontal exchange of genetic material among viruses, animals, plants, and microbes in soil, and does this differ from what is observed in aquatic systems?

What is the reason for the high frequency of parthenogenesis in some soil animal species and its absence in certain lineages, and what is its consequence for the evolution of these species?

Are there emergent properties at the landscape scale that arise from processes measured at much smaller scales, and can these properties be predicted from known soil ecological principles?

How does biodiversity in soil affect the diversity of other, connected environments in aquatic systems, and how important are temporarily flooded soils/sediments in linking diversity in these environments?

Do effects of landscape composition (diversity and composition of different adjacent ecosystems) and fragmentation on aboveground taxa lead to cascading effects on soil biota?

Is the weak link between biodiversity above- and below-ground due to soil organisms being limited more by resources arising from belowground sources (e.g., minerals arising from weathering) compared with aboveground sources (e.g., carbon from photosynthesis)? 

To what extent does the spatial turnover in soil animal and microbial communities differ compared with that observed for aboveground animals and microbes? 

How do soil biodiversity and ecological interactions in soil contribute to multiple ecosystem services such as carbon sequestration, disease suppression, and maintenance of aboveground biodiversity?



What is the relative importance of biotic and abiotic drivers for decomposition and the subsequent cycling of elements in different soil types and ecosystems?

What are the contributions of microbial-mediated weathering in the critical zone and other soil biotic processes during pedogenesis and organic matter formation?

What is the relative contribution of top-down versus bottom-up control within soil food webs, and does their importance vary among food web compartments?

What is the role of infochemicals for microbe-plant, microbe-animal, and animal-plant interactions in soil, and how are chemical signals effectively transmitted in a humus-rich environment?

How temporally stable are soil microbial communities, in terms of both taxonomic and functional community structure, and which community members are active at any one time?

Does functional redundancy in the traits expressed by multiple species lead to predictable outcomes from species interactions in soil despite differences in species composition?

What is the role of soil organisms in plant range expansion and to what degree can soil organisms migrate to favorable regions in response to climate change? 

What are the important mechanisms by which non-native species introductions impact soil ecological processes, and are the effects different for invasive soil biota than for invasive plants and other aboveground organisms?

What are the long-term fates and ecological consequences of xenobiotic compounds in soil, and how do environmental conditions affect these fates and consequences?

Do microbes inhabiting mineral surfaces respond differently to perturbation than those found elsewhere in the soil (for example, due to a greater capacity to acquire nutrients through mineral weathering)?

How feasible is it to restore extensively degraded soil ecosystems to a functional state and, if so, what roles can soil biota and ecological theory play in developing best practices for doing so?

What is the status and future of the generation of 'designer soils' that can provide a selected suite of ecosystem services in new (e.g., terraforming) or existing (e.g., restoration) environments? 



Is it possible to manage soils sustainably, from either an environmental or a financial perspective, given current and future practices in resource consumption by humans? 

Can we better integrate soil fauna into high-throughput analyses of soil biodiversity, perhaps through more effective approaches to sampling environmental DNA from soil and better designed primers for eukaryotic organisms?

Is it possible to visualize, in situ, soil processes (soil aggregate formation, interactions between biota etc.) in space and time at a level of resolution at which these processes are occurring?

Are there particular soil taxa that can be used as an indicator to assess the degree of impact associated with particular environmental stressors and perturbations?

How can we exploit modern molecular methods to resolve issues such as the species concept for taxa that do not exhibit sexual reproduction, or the drivers of population dynamics for modular organisms?

What are the key measurements that could be made to link cellular and organismic responses of soil biota and their activities to processes that occur at the scale of entire ecosystems?

Are there more meaningful experimental model organisms (besides Caenorhabditis elegans and Tertahymena thermophila) that would help us build quantitative models accounting for the high biodiversity in soils, extensive interplay between trophic and non-trophic interactions, and the fractal nature of the soil matrix?

How can we encourage open data sharing among soil ecologists (e.g. in open databases) in a way that ensures progress can be made without concerns arising with respect to the unethical use of these data?

Can we reverse the decline in taxonomic studies and recruit a new generation of taxonomists that are capable of integrating morphological evidence with an informed use of solid molecular databases?

How do we place soil biodiversity within a conservation perspective given the challenges we face with this 'enigmatic' system, such as extremely high diversity with much of it being cryptic or undescribed?

Can we prevent soil ecology as a discipline from becoming too focused on technological tools and ensure an appropriate emphasis on addressing fundamental and applied questions in soil ecology?

How can we encourage soil biologists to work with soil chemists to better understand the processes that go into the formation of recalcitrant organic matter?

Is it reasonable to expect that individuals from different research organizations and supported by different funding bodies can work together in an efficient and meaningful way given constraints that are put upon those researchers by those agencies?

How can we facilitate the technological advances that are required to simultaneously study geochemical and biochemical processes on mineral and organic surfaces?

How can we ensure that ecologists working above- and below-ground, as well as ecologists more generally collaborate effectively to maximize knowledge gained from individual studies?





Is the weak link between biodiversity above- and below-ground due to soil organisms being limited more by resources arising from belowground sources (e.g., minerals arising from weathering) compared with aboveground sources (e.g., carbon from photosynthesis)? 





Are there more meaningful experimental model organisms (besides Caenorhabditis elegans and Tertahymena thermophila) that would help us build quantitative models accounting for the high biodiversity in soils, extensive interplay between trophic and non-trophic interactions, and the fractal nature of the soil matrix?

Is it reasonable to expect that individuals from different research organizations and supported by different funding bodies can work together in an efficient and meaningful way given constraints that are put upon those researchers by those agencies?


