171 research outputs found

    %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    Full text link
    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system

    A Trait‐Based Framework for Assessing the Vulnerability of Marine Species to Human Impacts

    Get PDF
    Marine species and ecosystems are widely affected by anthropogenic stressors, ranging from pollution and fishing to climate change. Comprehensive assessments of how species and ecosystems are impacted by anthropogenic stressors are critical for guiding conservation and management investments. Previous global risk or vulnerability assessments have focused on marine habitats, or on limited taxa or specific regions. However, information about the susceptibility of marine species across a range of taxa to different stressors everywhere is required to predict how marine biodiversity will respond to human pressures. We present a novel framework that uses life-history traits to assess species’ vulnerability to a stressor, which we compare across more than 44,000 species from 12 taxonomic groups (classes). Using expert elicitation and literature review, we assessed every combination of each of 42 traits and 22 anthropogenic stressors to calculate each species’ or representative species group’s sensitivity and adaptive capacity to stressors, and then used these assessments to derive their overall relative vulnerability. The stressors with the greatest potential impact were related to biomass removal (e.g., fisheries), pollution, and climate change. The taxa with the highest vulnerabilities across the range of stressors were mollusks, corals, and echinoderms, while elasmobranchs had the highest vulnerability to fishing-related stressors. Traits likely to confer vulnerability to climate change stressors were related to the presence of calcium carbonate structures, and whether a species exists across the interface of marine, terrestrial, and atmospheric realms. Traits likely to confer vulnerability to pollution stressors were related to planktonic state, organism size, and respiration. Such a replicable, broadly applicable method is useful for informing ocean conservation and management decisions at a range of scales, and the framework is amenable to further testing and improvement. Our framework for assessing the vulnerability of marine species is the first critical step toward generating cumulative human impact maps based on comprehensive assessments of species, rather than habitats

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore