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1.0 ABSTRACT 
 
Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy 
consumed in the United States. The release of greenhouse gases from these fuels has spurred 
research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable 
resource that is carbon-neutral, and can provide a raw material for alternative transportation 
fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars 
for production of fuels.  The development of cost-effective and energy-efficient processes to 
transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, 
including the lack of specifically developed energy crops, the difficulty in separating biomass 
components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of 
fuels and processing byproducts on organisms responsible for producing fuels from biomass 
monomers. One of the main impediments to more widespread utilization of this important 
resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to 
deconstruct cellulosic biomass. 
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2.0 UNDERSTANDING ENZYME PERFORMANCE THROUGH 
COMPUTATIONAL MODELING 
 
2.1 Introduction 
 
The goal of the computational section was to provide hypothesis for generating mutants and 
understanding experimental results.  As the aim was to engineer an enzyme with improved 
performance in a dilute acid environment, we focused on three properties in particular: 
thermostability, catalytic activity and pH optimum. We explored two cellulase enzymes, the first 
from the extremophile Sulfolobus solfataricus, the second was celA from Alicyclobacillus 
acidocaldarius.  As Sulfolobus solfataricus exists in a low pH and high heat environment, the 
primary property to optimize was its catalytic activity.  With the celA , our initial goal was to try 
to lower its pH optimum from 5.5 to even lower for industrial use.  Since there was no a-priori 
data about the effects of mutations for this enzyme, we took a combined approach of structural 
modeling and bioinformatic analysis for both enzymes, described in the method sections.    
Although there was not a crystal structure available for either cellulase, we were able to generate 
homology models of both of them as a starting point for structure-based engineering. 
 
2.1.1 Cellulase from Sulfolobus solfataricus 
 
The cellulase from Sulfolobus solfataricus is a glycoside hydrolase (GH) enzyme belonging to 
the  glycosyl hydrolase family 12[1] as found in CAZY (Carbohydrate Active Enzymes database 
at http://www.cazy.org/).   Glycoside hydrolases are classified into 113 families based on 
sequence similarity, and differ on protein fold and reaction mechanism. The overall structure of 
the cel12 family is a β-jellyroll fold with a six stranded antiparallel β sheet packing on the 
outside of a nine-stranded mostly antiparallel βsheet curved around an active site cleft, as shown 
in Figure 2.1.  The cel12 family hydrolyzes the β -1,4-glycosidic bond in cellulose in a  catalytic 
mechanism involves two glutamic acids, one serving as a nucleophile and the other as a proton 
donor, in a double displacement reaction with a glycosylenzyme intermediate that results in 
retention of configuration in the product[2, 3].  A number of crystal structures have been solved 
in this family, and their protein data bank[4] entries shown in Table 2.1.  The key features in 
these enzymes, in addition to the catalytic glutamates, are a series of conserved aromatic residues 
interacting with the sugar rings on the cellulose substrate, along with specific hydrogen-bonding 
interactions from the backbone and polar sidechains.   The standard notation for these enzymes 
lists the interactions with each sugar as a subsite, numbered sequential from +3 to -3 from 
reducing end to non-reducing end, with cleavage occurring between +1,-1.  At the reducing end 
of the active site there is a conserved Pro-X-Gly motif, termed the “cord”, which causes the 
substrate to distort to aid in hydrolysis. 
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Table 2.1 Crystal structure of cellulase family 12 enzymes 

Organism PDB Structures 
R. Marinus[5] 1H0B,2BW8,2BWC
S. Lividans[6] 1NLR 
H. Grisea[7] 1OLR,1W2U 
A. Niger[8] 1KS4,1KS5 
T. Reesei[9] 1H8V,1OA2,1OLQ 

Strep. Sp.[10] 1OA4 
H. Schweinitzii[10] 1OA3 

2.1.2 CelA from Alicyclobacillus acidocaldarius 

Although CelA performs the same function as the cellulase from S. solfataricus, it belongs to the 
glycosyl hydrolase family 9[1] rather than family 12, which has several differences in addition to 
pH and thermal properties.  The first is that the overall fold is an ( // )6 barrel, which gives the 
active site a different shape, although it uses a similar pattern of aromatic residues interacting 
with the cellulose sugar groups for substrate binding.  And its reaction mechanism results in 

Figure 2.1 Crystal structure of cel12a from R. Marinus in “jellyroll” fold 
(green) bound to a cellulotetraose substrate (gray).  Key residues are 
highlighted –active site glutamates (red), aromatic groups (magenta), 
hydrogen-bonding groups (cyan). The XPXG “cord  is yellow. 
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inversion of configuration, rather than retention, with an aspartic acid performing the 
nucleophilic attack (presumably via a water) and a glutamate acting as the catalytic proton 
donor[2]. Crystal structures for family 9 cellulases are shown in Table 2.2.  CelA, like other 
members of the family, has an additional conserved aspartic acid that shares a water with the 
catalytic aspartic acid. 
  

Table 2.2  Crystal structure of cellulase family 9 enzymes  
with closest homology to celA 

 
Organism PDB Structures 
Thermospora fusca 1JS4[11] 
Nasutitermes 
takasagoensis 

1KS8[12] 

Clostridium cellulolyticum 1G87[13](cel9G) 
1IA6[14] (cel9M)   

Clostridium thermocellum 1UT9[15] 
 
 
2.1.3 Generating homology models from sequences 
 
Homology modeling, also called comparative modeling, is an approach to predicting three-
dimensional models of a protein structure from its amino acid sequence.  Because tertiary 
structures of proteins are far more conserved than their primary amino-acid sequences, many 
sequences will share the same overall fold, even with less than 20% identity in amino acid 
sequence.  Thus it is possible to generate a reasonable three-dimensional model of protein from a 
crystal structure of a protein homologous to the query structure.  The structure used is referred to 
as the ‘template’ for building the model.    As a rule of thumb, usually if the template and query 
have > 30% identity a good quality model can be produced.  With a sequence identity in the 20-
30% range is considered a region where it is possible to generate a model, but may be less 
accurate, and below 20% is usually not considered sufficient for generating a model.  
 
Sequence alignment is usually performed using programs such as FASTA[16] and BLAST[17] 
perform a pairwise alignment, and using  PSI-BLAST[18] or Clustal W[19] can be used to 
perform  a more accurate multiple sequence alignment when more than one homologous 
structure is available.    This is the most crucial step in homology modeling, as any errors in 
alignment will result in errors in the model.  Usually alignments are fine-tuned by taking into 
account secondary structure prediction of the query (i.e. α-helices and β-sheets) to help the 
alignment with the known secondary structure elements in the template, as these elements tends 
to make up the conserved core of the protein fold.   The most challenging part of homology 
modeling is prediction of the loop structures between the secondary structural elements.  These 
can vary in length between different proteins, and also have more variability in their folds.  Most 
homology modeling programs have a specialized loop modeling step to generate loop 
conformations, which may involve a combination of database look-up and energy optimization.  
After the backbone has been generated, the last step in generating a homology model is to predict 
the conformations of sidechains.  The most common program for this purpose is SCWRL [20, 
21], which starts with a backbone-dependent library of sidechain rotamers, and uses a graph-
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theoretical approach to rapidly solve the combinatorial problem of sidechain placement.  There 
are a number of homology modeling programs with web servers, which are listed in the methods 
section. 
 
2.2 Methods  
 
2.2.1 Generating a homology model for the cellulase from Sulfolobus solfataricus 
 
Cel12A from S. solfataricus is a challenging target for homology modeling.  The closest solved 
structure according to pairwise alignment after 2 rounds of  psi-blast[18] is Aspergillus Niger[8, 
12] with only 20% identity (higher identities are found for shorter length alignments). As the key 
to a successful homology model is to have the correct sequence alignment and understanding 
structurally conserved features, this low percent identity is considered at the bottom limit for 
homology modeling to be applied.   Several other cellulase structures have similar identities (see 
Table 1), and the one with the best alignment varies with the alignment method.  To handle this 
challenge, we chose to try several different available modeling packages to try to form a 
“consensus” model (see Table 2.3). Packages were chosen based on availability at the time.  
Templates were chosen automatically by each program. In addition, we performed an analysis of 
the known crystal structures of cel12 enzymes and their key conserved features, to have a basis 
for evaluating the different homology models (see Table 2.4).   
 

Table 2.3:  Comparison of homology programs used to model cellulase from S. solfataricus 
 

Program Template organism 
AS2TS-pairwise alignment[22] 2bw8 R. Marinus 
AS2TS-multiple alignment[22] 1olr H. Grisea 
EsyPred3d[23] 1w2u H. Grisea 
3D-JigSaw[24] 2bw8 n/a 
Robetta[25] Ab initio R. Marinus 
CPHmodels[26] 1h0b R. Marinus 
Geno3d[27] Failed to align  
SWISS-MODEL[28] Only small segments  

 
 
 

Table 2.4:  Comparison of conserved residue interactions in family 12 cellulases.  In standard 
notation  interaction sites are numbered sequentially based on the sugar group involved, with 

cleavage occurring between +1 and-1 positions. 
 

SubSite organism Aromatic Sidechain Hbond Main chain 
Hbond 

-3     
 R. marinus  cel12A W9,W68 N24  
 S. Lividans celB2 F8,Y66 N22  
 H. grisea Cel12A Y9 NY9,N114,Y66  
-2     
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 R. marinus W26,W68 N24,H67  
 S. lividans W24 N22,H65  
 H. grisea W24 N22  
-1     
 R. marinus  W26,E207,E124  
 S. lividans  W24,E203,E120,N155  
 H. grisea  W24,E205,E120,N155  
+1     
 R. marinus W159 E207,Y163 M136 
 S. lividans  E205 Q132 
 H. grisea  E205 Y132 
+2     
 R. marinus   M136 
 S. lividans   Q132 
 H. grisea   Y132 
 
 
2.2.2 Generating computational predictions for improving S. solfataricus cellulase 
activity 
 
Protein engineering usually requires multiple iterations of modeling and predicting.  As a first 
step, we focused on probing the amino acid space of related enzymes for conservative mutations 
which may improve activity.  We compared the enzyme model to two related enzymes T. Reesei 
and S. sp. 11AG8, which have the greatest catalytic activity in kinetic assays[10, 29].  We 
focused on identifying differences in residues in the active site involved in transition state 
binding, which may cause an increase in catalytic activity for the S. Solfataricus cellulase.  
Mutations were selected based on differences for which a structural hypothesis could be 
generated as to how they may improve catalytic activity such as increasing hydrophobic 
interaction with the sugars in the transition state, indirectly through charge or shape increasing 
interaction with the transition state, and improving product release. 
 
2.2.3 Generating a homology model for celA from Alicyclobacillus acidocaldarius 
 
The first step in modeling pH changes to CelA was to generate a homology model of the 
structure of CelA.   A BLAST search of the protein data bank (PDB) showed that  C. 
thermocellum had the highest sequence similarity to CelA, with ~30% identity. The primary 
program used to generate homology models of celA was the nest[30]  program which was shown 
to be one of the top homology modeling programs in a recent benchmark comparison[31].  The 
advantage of nest was that a locally installed version could be used to customize each step of the 
modeling process for celA. As with the cellulase from S. solfataricus we also compared results 
from multiple servers, chosen for availability based on time of the modeling, which  included 
ESyPred3D[23], FFSAO[32-34], SAM-T06[16, 35-37], AS2TS[22], and CPHmodels-20.0[26].   
FFSA0 and SAM-T06 were currently top-ranking homology servers in the ongoing livebench-
8[38] study.  
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For the homology models built using the nest program, we started with the set of five crystal 
structures listed in Table 2.  Individual pairwise identity ranged from 22-30% for these structures 
to celA.   Further, all templates showed significant sequence and structural identity in the active 
site residues among themselves and in alignment to celA. We compared 3 strategies for aligning 
the model: 
 

1. 1CLC as template (29%identity) after 4 rounds of psi-blast [18] multiple sequence 
alignement. 

2. 1CLC as template using a manually “tuned” alignment derived from a clustalW2[19] 
multiple sequence alignment of the five related glucanase structures followed by 
structural alignment using LGA[39], and manual optimization. The alignment tuning also 
took into account residues interacting with the oligosaccharide substrate in the crystal 
structures.  In particular, residues PHE399 and TRP339 were each realigned by 1 position 
to allow interaction with the substrate, mimicking interactions in 1IA6 and 1CLC 
respectively. 

3. Multiple templates (1CLC,1IA6, and 1UT9) using “tuned” alignment. 
 

All models were given a final refinement using nest’s conref utility for consistency (which 
produced higher scores in all cases)  and then assessed using Verify3d [40, 41] and ProQ[42] 
servers.  Two metrics were used to compare overall structures with Verify3d: the average score 
over all the residues, and the percent of low-scoring residues (<0.2) to highlight number of 
poorly modeled regions in each structure. 
 
2.2.4 Predicting pH optimum in CelA 
 
The goal with Alicyclobacillus acidocaldarius was to lower its pH optimum.  To modify pH 
optimum we started with the reaction mechanism.  CelA uses a inverting catalytic mechanism, 
with ASP146 performing the nucleophilic attack (presumably via a water) and GLU515 acting as 
the catalytic proton donor.  The pKa’s of these residues are responsible for the span of the active 
pH range, with the pKa of ASP146 providing the lower bound of active pH range, and the pKa of 
GLU515 providing the upper end of the active range. According to several examples in the 
literature, the best way to lower the pH optimum is to lower the pKa of the nucleophilic catalytic 
residue, in this case ASP146. 
      
Two methods were explored for predicting changes to pKa.  The first using a Poisson-Boltzmann 
calculation to evaluate changes in pKa, the second using the empirical PROPKA[43, 44]. 

1. Poisson-Boltzmann approach: Each residue was mutated using SQWRL[21] to position 
the mutated sidechain, and keeping the rest of the protein sidechain rigid, rather than a 
full conformational simulation of the sidechains.  Although less realistic that allowing all 
the sidechains to rotate, this allowed more computational consistency for comparing the 
overall charge effects.  pKas were predicted with ZAP[45], a fast single-conformer 
program that calculates electrostatic potential by solving the Poisson-Boltzmann equation 
using a smooth permittivity finite difference approach[46].   

 
2. PROPKA approach: Each residue was mutated using Sandia’s PEngineer[47] code, in the 

presence of a substrate model, band all rotamers below an energy cutoff were sent to 
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PROPKA, which has a feature to generate predictions from multiple rotamers.  PROPKA 
uses a fast empirical evaluation derived from quantum mechanical calculations to predict 
pKa. 

                                                                                                               
Subsequent benchmarking of the two approaches on a set of xylanases in are own studies and 
literature comparisons, show the PROPKA approach to be superior[48, 49]. 
 
In the first set of mutants selected for CelA the Poisson-Boltzmann approach was applied.  We 
started with residues within 5Å of the active site .  We further limited the mutations by analyzing 
the sequence conservation of these residues from our structural alignment.  Residues surrounding 
the active site were grouped into 3 categories: strictly conserved, conserved homology, and non-
conserved.  The strictly conserved residues were not selected for mutation.  The ones with 
conserved homology were limited to residues within the homologous set.  The last set of residues 
was allowed to fully mutate. 
 
 
2.3 Results  
 
2.3.1 Homology model of S. Solfataricus cellulase 
 
All models generated from the homology modeling programs were evaluated based on the 
conserved interactions listed in Table 4.  The models from AS2TS and ESyPred3D had the 
largest number conserved active site interactions.  In particular, most other models were missing 
an aromatic interaction in the P-3 subsite, due to differences in the loop building among the 
structural models.  Figure 2.2 compares the two top models, which are in overall agreement on 
residues predicted to interact with the cellulose substrate and to the multiple structure alignment, 
but differ further away from the active site. 
 

(a) (b) 

Figure 2.2.  Comparison of models from (a) ESyPred3D (yellow) and (b) AS2TS 
(white) to crystal structure of R. marinus template(purple).  The carbohydrate substrate 

is colored byatom with grey carbons and red oxygens. 

R. Marinus xtal structure 

Carbohydrate substrate 

Model from Esypred3d Model from AS2TS 
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2.3.1 Predicting residues to improve catalysis for S. solfataricus 
 
We used the model of S. solfataricus to compare residues those in T. Reesei and S. sp. 11AG8, 
which had the highest catalytic activities in the comparison study[10, 29].  We overlaid the both 
the AS2TS and ESyPred3D model structures with crystal structures of the two enzymes bound to 
a substrate mimic, and focused on the active site residues involved in transition state binding.  
Table 2.5 shows a list of the residues differences.  In addition to these differences, another 
difference involved insertion of Pro between 310Glu and 311Trp in the model.  Mutation 
predictions were chosen from these differences and from structural hypothesis.     Figure 2.3 
shows a list of the final mutations chosen. 
 
Table 2.5.  Residue differences between S. solfataricus model, S. Sp. And T. Reesei purported to 

be involved in transition state binding. Differences between S. Sp. and model 
(compared to both M5_1olr from AS2TS and prot_04623062 from ESyPred3D) 

Residue 
Number in 
Model  

Residue in 
Model 

Residue in S. Sp. 
11AG8 

Residue in 
T Reesei  

Notes: 

103 Asn Gly Gly  
137 Thr Pro Val Different Than T. 

Reesei 
142 Glu Ser n/a S-3 – new; 

ESyPred only 
207 Pro Tyr/His Tyr S-3 subsite 
208 Gly Tyr Tyr S-3 subsite 
223 Leu Val Ile  
226  Ala Ile Ile cord 
258 Trp Asn Met S-1,modified; 

AS2TS only 
260 Gly Val Val AS2TS only 
261 Trp Asn N/a Away from site 
263 Tyr Val n/a EsyPred only,new 
304 Asp Ser n/a  new,far from site 
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The final set of mutations chosen were grouped into four conceptual categories 

1. Mutations to add aromatic interactions to directly improve transition state binding: 
208 Gly->Tyr 
207 Pro->His 
207 Pro->Tyr 

 

2. Mutations to indirectly improve transition state binding : 
103Asn->Gly 

 

3. Mutations to improve product release  
Ala226->Gly 

4. Insertion Pro between 310 Glu and 311Trp 
 
The mutations have not been evaluated experimentally due to difficulties expressing S. 
solfataricus in sufficient quantities.  
 
2.3.2 Homology Model of CelA 
 
Models for CelA were generated from multiple programs using variations in alignment.   
Overall there was strong agreement between the models.   With the exception of the positioning 
of PHE399 and TRP339, all models generated a similar conserved set of interactions with the 
substrate.  Looking at Table 2.6, we see improvement by using the “tuned” alignment for 1CLC, 
and further improvement by using a combination of templates for the final structures, as seen in 
the increasingly higher average scores and the smaller percentages of low-scoring residues for 
verify3d, as well as high ProQ scores.  The AS2TS model had the highest ProQ scores. 
 

 

Glu 310 

Glu 213 

Asn 103 
Thr 137 

Ala 226 

Pro 207 Gly 208 

Figure 2.3. Mutations selected by comparison to S. Sp. 11AG8 which may improve 
catalytic activity.  Protein (green) with catalytic residues Glu 213,310(red).  modeled 
substrate (gray/red oxygens), and mutations orange,yellow(cord), and magenta. 
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Table 2.6. Comparison of the different homology model structures using Verify3D and ProQ to 
measure quality. *Note: ESyPred3D has a lower score because it chose the 1UT9 as the template 

(24.1% identity).  1CLC template produced an error. 
 

Method Template %Identity Verify3d 
Average 
Score 
X100 

Verify3d 
% <0.2 

ProQ 
LGscore 

ProQ 
MaxSub 

nest_1clc_psiblast[30]   1clc 29 37.4 8.9 5.730 0.484 
nest_1clc_tuned[30]   1clc 29 40.6 7.6 5.834 0.519 
nest_2struct_tuned[30]   1clc,1IA6 29, 23 39.1 5.9 5.931 0.508 
nest_3struct_tuned[30]   1clc,1IA6,

1UT9 
29,23,26 41.0 4.5 5.570 0.503 

*ESyPred3D[23] 1ut9 24.1 36.6 11.9 5.444 0.475 
FFAS03[32-34] 1clc 29 39.1 9.4 6.007 0.503 
SAM[16, 35-37] 1clc 29 38.5 5.6 5.354 0.475 
cph models[26] 1clc 30 37.9 9.2 5.906 0.503 
as2ts[22] 1clc 29 40.1 5.9 6.233 0.538 

 
Figure 2.4 shows a comparison of the positions for PHE399 and TRP339 in the “tuned” versus 
untuned alignments.  (The tuned alignment has both of these groups interacting with the 
substrate).  Although the scores are slightly better for the tuned alignment, the differences are 
small, and so this alone is not conclusive. Both the tuned and alternative positions for PHE399 
are seen in several of the crystal structures.  The tuned alignment for TRP339 is seen in several 
crystal structures, whereas the alternative is not, making the “tuned” alignment more likely.  
Figure 2.5 shows the model and the conserved pattern of aromatic interactions with the target 
substrate. 



 15 

 
 
 

Figure 2.4.  Comparing aromatic residues TRP339 and PHE399 (magenta) in 
models of CelA (green).  The “tuned” alignment has these residues interacting with 
the substrate(gray/red).  Alternate positions from other models are shown in blue. 
 

Figure 2.5.  Model of CelA (green).  Substrate taken from 4Tf4 and 1K72 
shown in gray with red oxygens.  Conserved aromatic interactions 
(yellow), catalytic residues (red), and conserved ARG (cyan) are shown. 
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2.3.3 Computational Engineering  of CelA to Lower pH Optimum 
 
The first set of mutants for CelA was generating by selecting residues within 5 Å of the catalytic 
acids, and using the Poisson-Boltzmann calculations to predict how these mutations would alter 
the pKa of ASP146 and GLU515.  With the exception of 300Y, only residue positions not 
expected to interact directly with the substrate were examined.  Table 2.7 shows residues chosen 
based on intial pKa predictions using Poisson-Boltzmann calculations on a preliminary 
homology model generated from cph models.  Note that 148G->D,E was chosen as a negative 
control and predicted to increase pHoptimum.   
 
Table 2.7.  pKa predictions from the Poisson-Boltzmann approach used to choose mutation, 
compared to PROPKA predictions.  The Poisson-Boltzmann predictions used the cph-models 
homology model, the PROPKA was run on the “tuned” model structure from nest.  Residue 
conservation is based on alignment. 
 

Mutation Residue 
conservation 

category 

Poisson-Boltmann pKa 
ASP 146 

PROPKA pKa 
ASP 146 

PROPKA-based 
prediction 

150Y->F conservative 1.9 5.1 Raise pKa 
300Y->N strict 2.6 4.6 No effect  
222P->D Not conserved 3.9 4.7 No effect  
222P->R  Not conserved -0.1 2.1 Lower pKa 
222P->H  Not conserved 0.9 4.7 No effect  
148G->E Not conserved 10.4 n/a n/a 
148G->D Not conserved 5.4 6.3 Raise pKa 
225D->R Not conserved 3.2 4.6 No effect  
520W->Y conservative 3.5 4.6 No effect  
WT 3.5 3.5 4.7 4.7 

   
Subsequent to choosing and testing mutations, newer pKa predictions were performed using 
PROPKA on the “tuned” model from nest.  Modeling of a substrate onto the 148G->E mutant 
showed it would interfere with substrate binding, consistent with its inactivity in assays.  The 
PROPKA predicts the majority of mutants initially selected to have no change in pH optimimum.  
In contrast to earlier prediction, PROPKA calculations predicts 150Y->F to slightly raise pKa 
instead of lowering it.  Both calculations predict 148G->D to raise pKa as a negative control.  
The only mutation from this set that PROPKA predicts as lowering pH is 222P->R. 
 
Experimental Results at  pH 5.5 for the mutants are shown in Figure 2.7.  Mutant 148G->D is 
inactive as expected in modeling with substrate present.  Most of the other muations are active.  
Mutation 300Y->N, which is a non-conservative mutation in a strictly conserved residue, is less 
active, as expected.  The protein precipitated at pH 4.5 and so we were unable to evaluate pH 
optimum.  At pH 6.5 mutant 148G->D shows a slightly higher relative activity compared to 
CelA (0.7) compared to its relative activity at pH 5.5 (0.6), which was consistent for the 
prediction of this negative control mutant.  All the rest show the same or lower relative activity at 
pH 6.5. 
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A second set of mutations was predicted for CelA, based on the nest “tuned” homology model, 
by comparing to other residues seen in that sequence among the multiple sequence alignment, 
that were around the active site of the enzyme.  The goal for this set was to see if copying 
interaction motifs from other enzymes could improve catalytic activity.  The mutations selected 
were:  221F->H,F,W   223P->G,W,Y   224L->A,G,F,W,Y  405M->A,K,R 461H->D 462H->D 
511Y->F,W  517A->T  519Y->D,N. A PROPKA calculation was performed on each and none 
were expected to lower pH optimum. Of the set, only 223P->W showed marginally improved 
catalytic activity. 
 

Asp146 

Glu 515 

Figure 2.6 Initial set of mutations selected for CelA. 

Tyr 150 

Tyr 300 
Pro 222 

Asp 225 
Trp 520 

Lowering pKa of the 
nucleophilic residue (ASP146) 
should have the most effect on 
lowering pH optimum. 
 
     Mutations predicted to lower 
pH of Asp146: 
150 Tyr>Phe 
222 Pro->Arg,Asp 
300 Tyr->Asn 
 
    Mutations predicted to lower 
pH of Glu 515 : 
520Trp->Tyr 
225Asp->Asn 
 

CelA 148GD 150YF 148GD 225DR 222PH 520WY 222PD 222PR 300YN 300YM 
0 
1 
2 
3 
4 
5 
6 
7 

Figure 2.7.  Specific Activity of CelA Mutants (µmoles/min/mg) at pH 5.5 
with CMC substrate. 
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2.4 Conclusion 
 
We generated a series of mutant predictions for S. solfataricus and celA.  Issues with expression 
prevented testing of the S. solfataricus mutations.  The mutations for celA were two sets: the first 
design to lower the optimum pKa, the second to explore variations in homologous enzymes.  We 
were not able to test the first set at lower pH due to enzyme precipitation, however 225D->R and 
222P->R both have good activities at pH 5.5 and may be worth pursing.  The set from comparing 
to related enzymes did not improve catalytic activity overall, although 223P->W showed 
marginally improved activity. 
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3.0 DIRECTED EVOLUTION STRATEGY FOR THE IMPROVEMENT OF 
CATALYTIC ACTIVITY OF CELA FROM THE THERMOACIDOPHILIC 
BACTERIUM ALICYCLOBACILLUS ACIDOCALDARIUS. 
 
3.1 Introduction 
 
A key step in the deconstruction of biomass and the strategy to overcome recalcitrance of 
lignocellulosic biomass (LC) is the use of cellulolytic enzymes for the hydrolysis of biomass and 
fermentation of resulting sugars to fuels. Enzymes that break down LC are isolated from 
microorganisms that hydrolyze sugars for metabolic requirements. Such enzymes are generally 
extracellular secreted and have been isolated from aerobic and anaerobic bacteria, archaea and 
fungi. Three major types of enzymatic activities that break down LC to sugars are (Fig 3.1) (i) 
endoglucanases or 1,4-β-D-glucan-4-glucanohydrolases (EC 3.2.1.4), (ii) exoglucanases, 
including 1,4-β-D-glucan glucanohydrolases (also known as cellodextrinases) (EC 3.2.1.74) and 
1,4-β-Dglucan cellobiohydrolases (cellobiohydrolases) (EC 3.2.1.91), and (iii) β-glucosidases 
(EC3.2.1.21).  Endoglucanases randomly cut the sugar polymer at internal amorphous sites, 
generating oligosaccharides of various lengths; exoglucanases act in a processive manner on the 
reducing or nonreducing ends of the polysaccharide chains, liberating either glucose or 
cellobiose as major products. β-Glucosidases hydrolyze soluble cellodextrins and cellobiose to 
glucose.  
 
One of the bottlenecks of LC deconstruction is the availability of enzymes that are stable and 
compatible with the biomass pretreatment methods like dilute acid pretreatment. Secondly, the 
industrial use of enzymes is limited by lack of stability (activity, half–life) under extremophilic 
conditions as most of the mesophilic enzymes are not well suited for harsh reaction conditions 
due to the lack of structural stability, which limits their use in industry. Thus for the commercial 
exploitation of proteinsin LC deconstruvction, our strategy revolves around using enzyme 
isolated from extremophilic organisms like CelA from Alicyclobacillus acidocaldarius. We are 
using the endoglucanase CelA from Alicyclobacillus acidocaldarius for LC breakdown strategy. 
The strictly aerobic, thermoacidophilic gram-positive bacterium A. acidocaldarius grows best at 
60 oC and pH 3–4. The organism can utilize a variety of polysaccharides as sole sources of 
carbon and energy, including starch and carboxy methyl cellulose (CMC). The enzyme that 
breaks down cellulose in A. aciodcaldarius- CelA- has been isolated and characterized. The 
recombinant enzyme has a temperature optimum of 70 oC and a pH optimum of 5.5. It contains 
one zinc and two calcium atoms, which are likely important for temperature stability. The 
enzyme is most active against substrates containing β-1,4-linked glucans (lichenan and carboxy 
methyl cellulose), but also exhibits activity against oat spelt xylan. However, the activity of the 
enzyme is low compared to the industrial standard enzymes like those from fungi (T. reesei, A. 
niger). Thus, we want to improve the catalytic activity of the enzyme so that the process 
economics can be improved for the cellulosic biomass deconstruction using enzyme engineering.   
 
Enzymes are protein biocatalysts that have evolved through biological evolution over several 
million years to achieve their characteristics. These biomolecules display extraordinary 
specificity and catalytic power, which can be used in industrial chemical reactions.  The 
specificity of the enzymes reduces by-product formation and thereby enables a more process-
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oriented operation as compared to chemical catalysis that can result in additional steps for the 
removal of unwanted side reactions. However, one drawback of enzymatic processes that since 
these enzymes are adjusted perfectly to their physiological role in the host organism, the activity 
and stability of naturally occurring enzymes is often much lower than that required for an 
economically feasible process as required in industrial processes like biofuels production. This is 
true for the stability of enzymes in organic solvents and certain other reactions requiring high 
selectivity and, finally yielding industrially important compounds like monomeric sugars from 
cellulose and hemicellulose. Nature has devised a method of screening and selecting for a better 
enzyme- natural evolution- i.e. it produces a large number of variants through natural mutation 
and selection of the ‘fittest’ variant for the host organism.  
 
Using techniques such as mutation and recombination and subsequent selection of a better 
variant by conducting in vitro enzyme assays, a similar process as natural selection for mutation 
can be carried out in vitro. ‘Directed evolution’, defined as directed development of the enzyme 
for a characteristic of interest, has resulted in the development of enzymes with improved 
properties for established applications and production of new enzymes tailor-made for novel 
applications. A directed evolution approach starts with the identification of a target enzyme to be 
optimized, cloning the gene into an efficient expression system (Figure 3.1). A mutant enzyme 
library is the created by subjecting the gene to random mutagenesis and/or in vitro 
recombination, thereby creating molecular diversity, i.e. mutant variants of the gene. The 
improved enzyme variants are identified by screening or selection for the desired property using 
a developed and optimized enzyme assay. The inferior enzymes and genes are discarded and 
genes encoding the improved enzymes are then used as ‘parent’ for the next round of directed 
evolution, repeating the whole process as often as necessary. Thus, directed evolution is an 
iterative process of creating ‘mutant libraries’ and then screening these libraries for the function 
or feature of interest in the improvement of the enzyme function (Figure 3.1) and is a generic 
term that describes the direction of improvement of the enzymes through screening methods.  
 
The collections of such methods provide a powerful tool for improving the properties and 
characteristics of enzymes as well as the development of enzymes with novel properties, without 
requiring extensive knowledge of enzyme structures or catalytic mechanism. In biotech industry, 
directed evolution has emerged as a key technology to generate enzymes with new or improved 
properties and has been used to evolve enzymes with altered properties such as substrate 
specificity, organic solvent, thermostability, catalytic activity and enantioselectivity. One of the 
advantages of directed evolution of enzymes over rational designed methods is that functional 
properties can be evolved without extensive knowledge and details of the target protein; the 
sequence space of the protein also limits the rational approaches over a small period of time. 
Directed evolution experiments allow for the efficient exploration of the sequence space through 
random mutagenesis by achieving molecular diversity in a library of mutagenized genes and 
selected for by specific assays. 
 
Random mutagenesis using techniques like error-prone PCR (ePCR) is a powerful tool for 
modifying proteins to improve their characteristics. Error prone PCR is a random mutagenesis 
technique for generating amino acid substitutions in proteins by introducing mutations into a 
gene during PCR. This technique exploits the fact that the thermostable polymerase used lacks 
proofreading activity, for example Thermus aquaticus (Taq) polymerase incorporates wrong 
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nucleotides at a frequency of 0.1x10−4 to 2x10−4 per nucleotide per round of extension of new 
DNA strand. Several protocols have been developed for increasing the error rate of Taq 
polymerase- increasing the concentration of MgCl2, addition of MnCl2, using non-soichiometric 
concentrations of nucleotides, using a mixture of triphosphate nucleoside analogs or a 
combination of all these to achieve higher rates of mutations.  
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3.2 Materials and Methods 
 
3.2.1 Enzyme assays. We used several different enzyme assays for measuring the activity of 
the engineered cellulases:  
 
Carboxymethyl cellulose Congo red assay: Also called the zone clearing assay. The lysed cell 
exttact is assayed using the procedure outlined. 10 ul of a 20x supernatant or 2 ul of 1x lysate 
was spotted onto an LB agar (1.5% w/v agar) plate containing 0.1% CMC. The plate was tehn 
incubated at 55ºC for 1 h. The plate was washed with 70% ethanol to precipitate the CMC. The 
wased plate was then incubated with 1% solution of Congo red dye (Sigma, St. Louis, MO) in 
water for 1 h at room temperature with rocking. The plate was then rinsed briefly with 1 M NaCl 
and incubated with 1 M NaCl for 1 h at room temperature with rocking. The rinse and incubate 
steps with NaCl were repeated for color development. The picture of the plate is taken for 
analysis of the zone of clearance for correlation of the cleared zone with activity.  
 
Tetrazolium blue reducing ends assay: This enzyme assay is adapted from Jue and Lipke 
(1984). Tetrazolim blue buffer was prepared by dissolving 0.1% tetrazolium blue dye, 0.05 M 
NaOH, and 0.5 M sodium potassium tartrate (Rochelle salts) in filter sterilized water. The 
enzyme assay mix was prepared by mixing equal volumes of 1x lysate and 750 uM sodium 
acetate (pH 6) containing .4% CMC (150 ul). The assay mixture was incubated in 60ºC water 
bath for 1 h, with occasional flicking of tube to mix. 40 ul cellulase/CMC sample and 4 ml 
tetrazolium blue buffer was added to a 16x100 mm borosilicate glass disposable culture tube. 
The sample was boiled in a beaker of water at rolling boil for 3 minutes exactly. The glass tube 
was moved to ice water bath and left for 1 minute to stop reaction. The absorbance was measured 
at 660 nm. The standards were run alongside the assay vials; typically 0, 5, 10, 15, 20, and 25 ug 
glucose samples (always 40 ul volume, with 4 ml of tetrazolium blue buffer, to ensure same 
conditions) were done in triplicate. 
 
DNS reducing ends assay: This assay has been modified from Wood and Bhat (1988). Briedfly, 
equal volumes of 1x lysate and 750 uM sodium acetate (pH 6) containing .4% CMC were mixed 
and incubate at 60ºC water bath for 1 h, with occasional flicking of tube to mix. In triplicate, 150 
ul cellulase/CMC sample, 100 ul 1 mg/ml glucose, 750 ul 1xPBS, and 3 ml DNS reagent were 
added to a 16x100 mm borosilicate glass disposable culture tube. The samples were boiled in 
beaker of water at rolling boil for 3 minutes exactly. The assay tube was then moved to ice water 
bath to stop the reaction and the absorbance of the assay was measured at 540 nm. Note: Always 
run a standard curve alongside samples; typically I run 100, 150, 200, 250, and 300 ug glucose 
samples (always x volume of 1 mg/ml gluocse plus appropriate amount of 1xPBS to reach 1 ml 
total; eg 150 ul 1 mg/ml glucose and 850 ul 1xPBS for 150 ug standard).  Again done in 
triplicate. This assay can be modified for microplate assays by reducing the volumes 
accordingly.  
 
Nelson-Somogyi Microplate Assay. The microassay for reducing sugars was modified from the 
original Nelson-Somogyi assay (5,6). 25 µl of sample and 25 µl of appropriate CMC was 
solubilized in 0.1 M citrate buffer (pH 5.0) in a 96-well microplate. The plate was then covered 
with an acetate adhesive sheet and incubated at 60°C for 24 h. After overnight incubation, 75 µl 
of Somogyi copper reagent was added to each well, and the plate was resealed with the acetate 
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sheet. The plate was then incubated at 80°C for 30 min in a water bath. After cooling the plate 
for 15 min, 75 µl of arsenomolybdate was added to each well and the resulting solution was 
mixed on a vortex mixer.  The resulting color was measured using using reflectance at 500 nm 
with a Shimadzu2 dual-wavelength densitometer (Shimadzu, Columbia, MD). Glucose was used 
to prepare the standard curve with concentrations ranging from 100 to 2000 µg/ml. 
 
3.2.2. Cloning for HTP analysis.  Cloning experiments were carried out with wild type CelA. 
CelA was cloned into pET-101-D/TOPO (Invitrogen, Carlsbad, CA) according to manufacturer’s 
recommendations. Directional TOPO® was used to clone blunt-ended CelA PCR products in a 
5´→3´ orientation directly into a pET-101 expression vector. The PCR primers were designed 
with a CACC overhang on the 5´ end and a blunt end on the 3´ end. pET Directional TOPO 
vectors were used cloning for E. coli expression so that we could try to use the highly efficient 
T7 RNA polymerase to achieve strong transcription levels and high protein yields using auto-
inducible media. T7 RNA polymerase is expressed by host E. coli under the control of the IPTG-
inducible lacUV5 promoter and the auto-inducible media can be used for expression without 
having to measure OD of the growth media. The additional lacO element found in the T7 lac 
promoter used in the pET vectors allows for the reduced basal expression levels while enabling 
strong transcriptional activity upon induction with IPTG. Auto-inducible media (Novagen) was 
used to express proteins from pET-101 vector.  
 
3.2.3. Protein expression. Two different expression systems were tested for protein 
expression. The Overnight Express Autoinduction Systems (EMD Biosciences) was used for the 
the regulated expression of CelA clone in the pET-101-TOPO expression vector. Auto-induction 
media enables the regulated protein expression in E. coli without the need to monitor the culture 
or add inducer like IPTG during cell growth. Second expression analysis was done in Top10 
cells (Invitrogen), the same E. coli strain that is used for cloning of gene. The Top10 competent 
cells were transformed with pBAD-HisA-CelA clones and induction of protein expression was 
initiated by the addition of 0.02% (w/v) of arabinose. 
 
3.2.4. ePCR protocols: The mutational frequency of the PCR reaction was controlled by 
varying the amount of starting DNA in the reaction and using the GeneMorph II Domain 
Mutagenesis Kit (Stratagene-Agilent). For low frequency mutations, 500ng of the template DNA 
was used, for medium frequency mutations, 100 ng of the template DNA was used and for high 
frequency mutations, 10 ng of the template DNA was used.  Briefly, the target amount of DNA 
was chose to make mutations in the low, medium and high frequency range. PCR reaction for 
50-µl reactions contained 41.5 µl of water, 5 µl of 10x Mutazyme II reaction buffer, 1 µl of 40 
mM dNTP mix (200 µM each final), 0.5 µl of primer mix (250 ng/µl of each primer), 1 µl of 
Mutazyme II DNA polymerase (2.5 U/µl), 1 µl template DNA. The reaction mix was centrifuged 
briefly. Standard PCR program was used for with the following steps: Denaturation- 95°C for 2 
minutes. PCR 1 cycle, 95°C 1 minute, Primer Annealing 60°C for 1 minute, Extension at 72°C 1 
minute for 3 minutes (1 minute/kb); repeat for 30 cycles and a final polishing step at 72°C at 10 
minutes. The PCR products were quantitated using picogreen reagent (Invitrogen) and the 
products were separted on a 1% agarose gel. Estimate the PCR product yield by comparing the 
intensities of the PCR product bands with the 1.1-kb gel standard. It was noted that the expected 
mutation frequencies are typically achieve when the PCR yield of a 10-µl sample is between 100 
ng and 2 µg, which corresponds to a yield of between 500 ng and 



 24 

10 µg for a 50-µl reaction. The PCR product is now ready to be cloned into an expression vector 
and introduced into competent cells according to appropriate protocols. 
 
3.2.5 Cloning of the Mutant Library into the pBAD vector. The PCR products from the error 
prone PCR reaction in the previous step were used for ‘mega-primer PCR’ to amplify the whole 
plasmid. This steps avoids the use of restriction digestion for cloning the PCR product into the 
vector. The plasmid DNA template used in the cloning reaction was the same as the original 
plasmid DNA used as template in the mutant megaprimer synthesis reaction. Briefly, the mega-
primer PCR was set as follows: In a thin walled PCR tube, 25 µl of the 2x EZClone enzyme mix 
was added followed by 50 ng of template plasmid, 500 ng for megaprimer  (PCR products from 
the previous step), 3 µl of EZClone solution and ddH2O to a final volume of 50 µl. Cycling 
parameters for the megaprimer PCR were Denaturation at 95°C for 1 minute; main program- per 
cycle:  95°C for 50 seconds, 60°C for 50 seconds, 68°C for 11 min (2 minute/kb of plasmid 
length) for a total of 25 cycles. Place the reaction on ice for 5 minutes to stop the reaction.  
 
3.2.6 DpnI digestion of the PCR products: Dpn I restriction enzyme digestion of the PCR 
products was carried out by adding 1 µl of Dpn I restriction enzyme (10 U/µl) directly to each 
amplification reaction. The reaction was mixed gently and by pipetting the solution up and down 
several times. The reaction tube was spun down in a microcentrifuge for 1 minute and incubated 
immediately at 37°C for 2 hours to digest the parental (i.e., the nonmutated) supercoiled dsDNA. 

 
3.2.7 DNA sequencing. DNA sequencing was used to confirm the sequence of the construct as 
well as randomly sampled clones from the mutagenesis reaction. 
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3.3 Results and Discussion 
 
3.3.1 Random Mutagenesis Analysis of the Frequency of Mutations. The GeneMorph II 
(Strategene Agilent) kit was used for selecting the frequency of mutation most appropriate for a 
directed evolution of cellulases. For analyzing protein structure-function relationships, a low 
mutation frequency of ~ one amino acid change (1–2 nucleotide changes) per gene is desired. 
However, in directed evolution studies, mutation frequencies of 1–4 amino acid changes (2–7 
nucleotide changes) per gene are commonly employed. One of the drawbacks of the Taq 
polymerase is that ther is distinct mutational bias exhibited by the enzyme and this bias skews 
representation of random mutant libraries, diminishing the effective size of the collection 
produced by error prone PCR. Thus, Mutazyme II DNA polymerase from Strategene was used 
since it is a novel error prone PCR enzyme blend that provides minimal mutational bias. 
Therefore, libraries created with Mutazyme II should exhibit greater mutant representation 
compared to libraries generated with other enzymes. In this reaction, the desired mutation rate 
can be controlled simply by varying the initial amount of target DNA in the reaction or the 
number of amplification cycles performed. The gel with low, medium and high mutation rates 
PCR products is shown in Fig 3.6.   
 
3.3.2 Selection of enzyme assays. We conducted enzyme assays for all four major enzyme 
assays sued for quantitating cellulase activity- congo Red assay, azo-CMC assay, tetrazolium 
blue assay, DNS assay and nelson-somogyi assay. While congo red and tetrazolium blue assays 
were rules out because of the inherent problems with the assays- Congo red assays are very 
qualitative and the growth media was found to contain interfering substances that did not make 
using tetrazolium blue assays feasible. The remaining three assays were used for quantitating the 
activity in a 96-well plate assay since 96 –well plate format is used for the expression of ‘picked 
colonies’. AS shown in Fig 3.2, 3.3 and 3.4, Azo-CMC assay (Fig 2) was found to have the most 
error of the three assays (Fig 3- DNS assay; Fig 4: Nelson Somogyi assay). The assay was seen 
to have a well-to-well variation that could not be traced to the protein expression as the enzyme 
assays were carried out using the WT protein expression in all the 96 wells of the plate. The SD 
of the assay was > 25% and thus would not be useful for incremental improvement of the 
proteins. Nelson-somogyi assay was also found to have a large error and well-to-well variation. 
DNS assay, on the other hand, was found to be the most reproducible and also showed the least 
SD of the enzyme assays (SD <10%). The one disadvantage of the DNS assay has been the low 
color development as measured by the absorbance at the specific wavelength. Based on the 
activity analysis and well-to-well variation of enzyme activity as measure in 96 well plates, DNS 
assay was chosen as the assay for high-throughput analysis of enzyme activity. 
 
3.3.3 Protein Expression in 96 well plates. One of the central problems with quantitating 
enzyme activity in 96 well plates is that the activity has to be attributable to the proteins and not 
to the differential expression of the protein in the different 96 well plates.  We thus used 
expression of the wild-type protein in all of the 96 wells to gauge the variability in the protein 
expression levels. Protein expression was quantitated by measuring the amount of the protein 
produced as visually seen on a protein SDS-PAGE gel and quantitated by densitometric analysis. 
While we did not run a protein gel on all the wells, a random sampling of the wells was used to 
gauge the protein expression. Fig 3.5a and 3.5b shows the coomassie stained gel of a randome 
sampling of wells in a 96 well plate. As seen from the figure, protein expression does not vary 
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dramatically between the wells towards the interior of the plate with the wells towards the 
outside of the plate. The maximum variation that can be measured is < 10% as quantitated by 
densitometric analysis of the stained protein gel. Thus, the 96 well plate based expression of the 
enzyme can be used for the HTP protein production and evaluation of activity. Furthermore, 
these results and variation in activity was compared with protein expression in 24 well plates that 
can be used for growing cell cultures up to 5 ml. The reason being that a larger culture would 
lead to less variation in protein expression. The results (data not shown) clearly indicate that 
protein expression variability is not comparable to that seen in 96 well plates and, thus, there is 
no advantage in using larger cultures for quantitation of activity. 
 
3.3.4 Surveying and selecting mutation rates for CelA. Before the start of a protein 
engineering experiment using error-prone PCR, the mutation rate that best suits the experiment 
has to be figured out. We conducted three different experiments with three different error rates- 
low, defined as 1-4 mutated bases/kb of the gene medium, defined as 4-9 mutated bases/ kb of 
the gene and high, defined as 9-16 mutated bases/kb of the gene- were surveyed to define the 
error rate for analysis. As shown in Fig 3.7a, low error rates resulted in at least 30% of the 
enzyme variants that are within +/- 20% of the wild type enzyme activity. In a similar 
comparison of the wild type with enzyme variants resulting from medium error rates resulted in 
<15% of the proteins that are within +/-20% of the wild type enzyme activity (Fig 3.7b). In 
comparison, the high mutation rate resulted in almost all the enzymes to be less than the wild 
type enzyme and the vast majority (~90%) were found to have < 30% of the wild type activity 
(Fig 3.7c). It can thus be concluded that the low mutation rate would be the most suitable error 
rate to direct the evolution of the enzyme for higher catalytic activity.  
 
3.3.5 Comaprison of the low error library using two different enzyme assays.  As 
mentioned earlier, DNS assay were routinely found to be the most reproducible enzyme assay.  
However, the wild type CelA activity was characterized using the Nelson-Somogyi assay; we 
thus compared the activity of the activity of the two enzyme assays. WE thus compared the 
variants generated from the low error rate library using both the DNS and the Nelson-Somogyi 
assays. As seen in Fig 3.8a and Fig 3.8b, DNS assay and the Nelson-Somogyi assay were found 
to have a high degree of correlation at the higher end of the enzyme activity. However, the 
correlation is poor when the enzyme activity is much lower than the wild type. These 
experiments show that while either of the enzyme assays can be used for reliable quantitation of 
the enzyme activity, there are limits to the sensitivity of the enzyme assays. Furthermore, we can 
also say with a high degree of confidence that enzyme activities calculated with these two 
different assays are comparably similar. 
 
3.4 Conclusion 
In conclusion, we have carried out the foundational experiments for directed evolution 
experiments- we have optimized enzyme assays for 96 well plate format, protein expression in 
96-well plate format and selected the error rate that is best suited for generating mutant libraries 
for the catalytic improvement of CelA. 
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Fig 3.1: Experimental strategy for the directed evolution of enzymes
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Fig 3.2: Azo-CMC Activity Assay of 96 Well Plate 1 ml CelA Wild
Type Cultures (Average of Two Repeated Assays)
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Fig 3.3: DNS Activity Assay of 24 Well Plate - 5 ml CelA Wild
Type Cultures (Average of Three Repeated Assays)
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Fig 3.4: Nelson-Somogyi Activity Assay of 96 Well Plate 1 ml CelA
Medium Mutation Cultures (Average of Two Repeated Assays)
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Fig 3.5a: BugBuster Master Mix Extracted Lysates from CelA 1ml
Cultures Grown in 96 Well Plates, C Row - Lanes 1 thru 9 (Coomassie
Stained, 4-20% Tris-Gly Gel)

Lanes:

  1 = Mark 12 Ladder
  2 = CelA Lysate from C1 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  3 = CelA Lysate from C2 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  4 = CelA Lysate from C3 Well of 1 ml Culture
        Grown in 96 Well Plate, 10 ul on gel

  5 = CelA Lysate from C4 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  6 = CelA Lysate from C5 Well of 1 ml Culture
        Grown in 96 Well Plate, 10 ul on gel

  7 = CelA Lysate from C6 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  8 = CelA Lysate from C7 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel
  9 = CelA Lysate from C8 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

 10 = CelA Lysate from C9 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel
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Fig 3.5b: BugBuster Master Mix Extracted Lysates from CelA 1ml
Cultures Grown in 96 Well Plates, G Row - Lanes 1 thru 9 (Coomassie
Stained, 4-20% Tris-Gly Gel)

Lanes:

  1 = CelA Lysate from G1 Well of 1 ml Culture
        Grown in 96 Well Plate, 10 ul on gel

  2 = CelA Lysate from G2 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  3 = CelA Lysate from G3 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel
  4 = CelA Lysate from G4 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  5 = CelA Lysate from G5 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel
  6 = CelA Lysate from G6 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  7 = CelA Lysate from G7 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

  8 = CelA Lysate from G8 Well of 1 ml Culture
        Grown in 96 Well Plate, 10 ul on gel

  9 = CelA Lysate from G9 Well of 1 ml Culture

        Grown in 96 Well Plate, 10 ul on gel

 10 = Mark 12 Ladder

   1      2    3     4     5     6    7     8     9    10
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Fig 3.6: E-Gel of Gel Purified MegaPrimers for CelA (9/02/08)
Low, Medium & High Mutation Rates

Lanes:

  1 = 1 Kb Plus DNA Ladder, 2.0 µl on gel

  3 = 1.1 Kb standard - 50 ng on gel

  5 = Low Mutation Rate Gel Purified PCR product,
        0.5 µl on gel

  7 = Medium Mutation Rate Gel Purified PCR
        product, 0.5 µl on gel

  9 = High Mutation Rate Gel Purified PCR product,
        0.5 µl on gel
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Fig 3.7a: CelA Random Mutagenesis - Low Mutation Rate Activities
(Nelson-Somogyi Assay)
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Fig 3.7b: CelA Random Mutagenesis - Med Mutation Rate Activities
(Nelson-Somogyi Assay)
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Fig 3.7c: CelA Random Mutagenesis - High Mutation Rate Activities
(Nelson-Somogyi Assay)
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Fig 3.8a: Nelson Somogyi vs DNS Assay for mutants
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