13 research outputs found

    ASPASIA: A toolkit for evaluating the effects of biological interventions on SBML model behavior

    Get PDF
    <div><p>A calibrated computational model reflects behaviours that are expected or observed in a complex system, providing a baseline upon which sensitivity analysis techniques can be used to analyse pathways that may impact model responses. However, calibration of a model where a behaviour depends on an intervention introduced after a defined time point is difficult, as model responses may be dependent on the conditions at the time the intervention is applied. We present ASPASIA (Automated Simulation Parameter Alteration and SensItivity Analysis), a cross-platform, open-source Java toolkit that addresses a key deficiency in software tools for understanding the impact an intervention has on system behaviour for models specified in Systems Biology Markup Language (SBML). ASPASIA can generate and modify models using SBML solver output as an initial parameter set, allowing interventions to be applied once a steady state has been reached. Additionally, multiple SBML models can be generated where a subset of parameter values are perturbed using local and global sensitivity analysis techniques, revealing the model’s sensitivity to the intervention. To illustrate the capabilities of ASPASIA, we demonstrate how this tool has generated novel hypotheses regarding the mechanisms by which Th17-cell plasticity may be controlled <i>in vivo</i>. By using ASPASIA in conjunction with an SBML model of Th17-cell polarisation, we predict that promotion of the Th1-associated transcription factor T-bet, rather than inhibition of the Th17-associated transcription factor ROR<i>γ</i>t, is sufficient to drive switching of Th17 cells towards an IFN-<i>γ</i>-producing phenotype. Our approach can be applied to all SBML-encoded models to predict the effect that intervention strategies have on system behaviour. ASPASIA, released under the Artistic License (2.0), can be downloaded from <a href="http://www.york.ac.uk/ycil/software" target="_blank">http://www.york.ac.uk/ycil/software</a>.</p></div

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Utilising a simulation platform to understand the effect of domain model assumptions

    Get PDF
    Computational and mathematical modelling approaches are increasingly being adopted in attempts to further our understanding of complex biological systems. This approach can be subjected to strong criticism as substantial aspects of the biological system being captured are not currently known, meaning assumptions need to be made that could have a critical impact on simulation response. We have utilised the CoSMoS process in the development of an agent-based simulation of the formation of Peyer’s patches (PP), gut-associated lymphoid organs that have a key role in the initiation of adaptive immune responses to infection. Although the use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insight into the cellular components and associated pathways involved in PP development, interesting questions remain that cannot be addressed using these approaches, and as such well justified assumptions have been introduced into our model to counter this. Here we focus not on the development of the model itself, but instead demonstrate how the resultant simulation can be used to assess how these assumptions impact the simulation response. For example, we consider the impact of our assumption that the migration rate of lymphoid tissue cells into the gut remains constant throughout PP development. We demonstrate that an analysis of the assumptions made in the construction of the domain model may either increase confidence in the model as a representation of the biological system it captures, or may suggest areas where further biological experimentation is required

    B cell zone reticular cell microenvironments shape CXCL13 gradient formation

    Get PDF
    Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients

    Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma.

    Get PDF
    Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease

    TUMOUR BIOLOGY

    No full text

    Abstracts

    No full text

    HIGH GRADE GLIOMAS AND DIPG

    No full text
    corecore