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Pediatric midline high-grade astrocytomas (mHGAs) are 
incurable with few treatment targets identified. Most tumors 
harbor mutations encoding p.Lys27Met in histone H3 variants. 
In 40 treatment-naive mHGAs, 39 analyzed by whole-exome 
sequencing, we find additional somatic mutations specific 
to tumor location. Gain-of-function mutations in ACVR1 
occur in tumors of the pons in conjunction with histone 
H3.1 p.Lys27Met substitution, whereas FGFR1 mutations 
or fusions occur in thalamic tumors associated with histone 
H3.3 p.Lys27Met substitution. Hyperactivation of the bone 
morphogenetic protein (BMP)-ACVR1 developmental 
pathway in mHGAs harboring ACVR1 mutations led to 
increased levels of phosphorylated SMAD1, SMAD5 and 
SMAD8 and upregulation of BMP downstream early-response 
genes in tumor cells. Global DNA methylation profiles were 
significantly associated with the p.Lys27Met alteration, 
regardless of the mutant histone H3 variant and irrespective 
of tumor location, supporting the role of this substitution in 
driving the epigenetic phenotype. This work considerably 
expands the number of potential treatment targets and further 
justifies pretreatment biopsy in pediatric mHGA as a means to 
orient therapeutic efforts in this disease.

We and others recently identified recurrent mutations in H3F3A, 
encoding histone 3 variant 3 (H3.3), in 38% of pediatric supratento-
rial HGAs and mutations affecting histone H3.3 or H3.1 in ~80% 
of brainstem HGAs (diffuse intrinsic pontine gliomas, DIPGs)1–3. 
Mutations affecting the histone H3 tail that change the glycine at 
position 34 to either arginine or valine (p.Gly34Arg or p.Gly34Val), 
as well as mutations in genes affecting histone H3 post-translational 
modifications at lysine 36, predominate in cortical tumors, whereas 

lysine-to-methionine substitutions at residue 27 (p.Lys27Met) occur 
in midline tumors1,2,4,5.

Herein we focus on the genomic (mutational spectrum and copy 
number alterations) and epigenetic (DNA methylation) landscape 
of treatment-naive pediatric midline (thalamus, cerebellum, spine 
and pons; non-cortical regions) high-grade astrocytomas (Figs. 1–3).  
These tumors are often surgically challenging or inoperable, and 
published studies have mainly used material collected after therapy 
and have provided limited genomic data other than structural altera-
tions and mutational analysis of histone H3 variant genes and TP53 
(refs. 1,3,6,7). We analyzed 40 mHGAs, with whole-exome sequenc-
ing data for 39 tumors, including 25 biopsies from DIPG cases (11 
previously reported2,8; Online Methods and Supplementary Table 1). 
The recurrent histone H3 gene mutation encoding p.Lys27Met was 
found in 37 of 40 cases (93%) and was distributed among three histone 
variant genes, including H3F3A (32/40 samples), HIST1H3B (4/39 
samples) and HIST1H3C (1/39 samples). HIST1H3C also encodes the 
canonical histone H3.1 (as does HIST1H3B) and has not previously 
been reported to be mutated (Fig. 1). All five histone H3.1 altera-
tions occurred in the pons of younger cases (Supplementary Fig. 
1). Histone H3.3 p.Lys27Met alterations occurred in multiple mid-
line locations, including the brainstem (19/25), thalamus (9/11) and 
rare locations for HGAs—the cerebellum, fourth ventricle and spinal 
cord (4/4). In contrast, only 1 histone H3.3 p.Lys27Met mutant was 
identified in 42 pediatric high-grade tumors located in cerebral hemi-
spheres in a previously reported data set2,5 (Fig. 1 and Supplementary 
Table 1).

The pattern of somatic mutations in specific genes or gene path-
ways showed striking features (Fig. 1 and Supplementary Fig. 1).  
Recurrent somatic mutations in the activin A receptor, type I gene (ACVR1) 
occurred in 5 of 39 mHGAs and overlapped with p.Lys27Met alterations 
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(5/5), mainly in histone H3.1 (4/5) rather than histone H3.3 or wild-
type histone H3 (P = 0.0003, Fisher’s exact test; Supplementary Fig. 1).  
These specific amino acid residues in ACVR1 have previously been 
reported to be affected by germline mutations causing fibrodys-
plasia ossificans progressiva (FOP), an inherited musculoskeletal 
disease9–14. The p.Arg206His, p.Gly328Glu and p.Gly356Asp substi-
tutions result in ligand-independent activation of the kinase, leading 
to an increase in BMP signaling and increased phosphorylation of 
SMAD1, SMAD5 and SMAD8 (SMAD1/5/8) in tissues10, whereas 
the newly identified p.Gly328Val and p.Arg258Gly substitutions are 
predicted to exert gain-of-function effects similar to those for the 
previously described p.Arg258Ser, p.Gly328Glu, p.Gly328Trp and 
p.Gly328Arg alterations, on the basis of the physicochemical properties  
of the mutant residues and predicted protein structure (Fig. 4 and 
Supplementary Table 2)11,12. ACVR1, also known as ALK2, is a type 
I receptor of the mammalian transforming growth factor (TGF)-
β signaling family with critical developmental roles in the mouse 
embryo13 and in early left-right patterning14. Investigation of ACVR1 
pathway activation using immunohistochemical staining for phospho-
rylated SMAD1/5/8 in DIPG samples showed positive staining only 
in tumors with mutant ACVR1 (4/4), including in DIPGs with the 
newly identified p.Gly328Val and p.Arg258Gly alterations (Fig. 2).  

In addition, in the primary cell line DIPGIV, which carries histone 
H3.1 p.Lys27Met and the new ACVR1 substitution p.Gly328Val, we  
demonstrated increased levels of phosphorylated SMAD1/5/8 com-
pared to normal human astrocytes (NHA cells) and significantly 
increased expression of genes containing BMP response elements—
ID1, ID2 and ID3—and SNAI1 compared to KNS42, a cell line with 
the histone H3.3 p.Gly34Val alteration and wild-type ACVR1 (Fig. 4). 
These genes are early-response genes induced following active BMP2 
signaling and represent SMAD1/5/8 downstream effectors15,16.

We identified mutations in FGFR1 in association with histone H3.3 
p.Lys27Met alteration in 4 of 39 cases: 3 thalamic HGAs also having 
NF1 mutations (previously reported in ref. 8) and 1 DIPG (Fig. 1).  
These FGFR1 mutations affected hotspot residues in the tyrosine 
kinase domain of the FGFR1 receptor. They have been shown to 
lead to its constitutive activation in a subset of thalamic pilocytic 
astrocytomas, a grade I tumor that rarely progresses to higher-grade 
astrocytoma, and in NIH 3T3 cells8. Comparison with our data set 
of non-midline cortical HGA-HGG indicated that tumors carry-
ing ACVR1 or FGFR1 mutations were exclusive to midline HGAs  
(P = 0.0040, Fisher’s exact test; Fig. 1 and Supplementary Fig. 1b).

TP53 mutations occurred in 28 of 40 samples, largely in combi-
nation with histone H3.3 p.Lys27Met alteration (25/28) as reported 

previously1,2 and, to a much lesser extent, 
with histone H3.1 p.Lys27Met alteration 
(1/5) (Fig. 1 and Supplementary Fig. 1b). 
One DIPG sample (mHGA1) had histone 
H3.3 p.Lys27Met alteration as well as a splic-
ing mutation in CHEK2, a gene associated 
with Li-Fraumeni syndrome similar to TP53 
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Figure 1  Genomic landscape of pediatric midline HGAs. Distribution of mutations and alterations in 40 pediatric midline high-grade astrocytomas 
(midline HGA) and 42 cortical high-grade astrocytomas and high-grade gliomas (cortical HGA-HGG) described in the study. Mutations (mut) were 
identified with whole-exome sequencing (WES) where available and are indicated by colored boxes. Amplifications (amp) and losses were identified 
using DNA methylation profile–derived copy number variant (methyl-CNV) analysis and are indicated where available by colored boxes. SC, spinal 
cord. Boxes in light gray indicate samples for which data are not available. Detailed information on tumor samples included herein can be found in 
Supplementary Table 1, with specific variants and transcript accessions presented in Supplementary Table 6.
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Figure 2  Increased levels of phosphorylated 
SMAD1/5/8 in ACVR1-mutant mHGAs. 
Immunohistochemical analysis of mHGAs 
harboring ACVR1 mutations identified in this 
study (n = 4; left) demonstrate increased 
nuclear positivity of phosphorylated SMAD1/5/8 
compared to mHGAs with wild-type ACVR1 
(n = 3) and a control brain sample (right), 
with total-SMAD1 staining shown in each 
case as a positive control. Scale bars, 20 µm 
(20× magnification). Clinicopathological and 
molecular characteristics of tumor samples are 
presented in Supplementary Table 1.
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(Fig. 1 and Supplementary Tables 1 and 6). 
Three midline samples displayed no detect-
able mutation across H3F3A, HIST1H3B 
and HIST1H3C, even when sequenced at 
extremely high depth (average read depth 
across all tumors and genes of >20,000×; 
Supplementary Table 3). These samples car-
ried alterations described in adult HGA in the form of combined TP53 
mutation, PDGFRA amplification and CDKN2A loss (mHGA35), 
PDGFRA and EGFR amplification and NF1 loss (mHGA36), or the 
previously identified FGFR1-TACC1 fusion17,18 (mHGA37) (Fig. 1 
and Supplementary Tables 1, 3 and 4).

We identified somatic PDGFRA mutations in a small subset 
of pediatric mHGAs (5/39; Supplementary Table 1). Notably, 
PDGFRA amplification occurred in 3 of 12 treatment-naive DIPGs 
(Supplementary Fig. 2 and Supplementary Table 1). Interestingly, 
a cerebellar HGA sample with multiple biopsies taken from different 
anatomical loci showed PDGFRA amplification in only one tumor site, 
whereas similar somatic mutation and DNA methylation profiles were 
observed across all tumor sites (Supplementary Fig. 3). This find-
ing supports the view that PDGFRA amplifications precede therapy 
but can be further promoted by it, as described in radiation-induced 
supratentorial HGA19. Mutations in other growth factor receptor and 
component genes described to have focal gains or losses in DIPG6,7 
or HGA (MET, RB1 and PARP1) showed low incidence in our data 
set (Fig. 1 and Supplementary Tables 1 and 4–6), whereas recurrent 
mutations in components of the phosphoinositide 3-kinase (PI3K) 
pathway, predicted to activate AKT signaling, were present in 10 of 
39 mHGAs. With respect to alterations affecting telomere length, 
ATRX mutations were identified in nine midline tumors, exclusively 
in samples with histone H3.3 p.Lys27Met alteration and TP53 muta-
tion, and affected older children1, whereas no TERT promoter muta-
tions, assessed using targeted sequencing, were identified in mHGAs 
(Supplementary Table 1).

Lysine-to-methionine substitutions in histone variants at residue 
Lys27 have recently been shown to inhibit SET domain–containing 
histone methyltransferases20, possibly accounting for the specific 
DNA methylation pattern we observed in non-brainstem tumors 
with the histone H3.3 p.Lys27Met alteration4. When clustering our 
samples by global DNA methylation, all samples with a given his-
tone H3 alteration (absent or affecting Lys27 or Gly34) clustered 
together but did not group on the basis of tumor location within 
the brain, the particular histone H3 gene mutated, and additional 
partner mutations or structural alterations identified (Fig. 3 and  

Supplementary Figs. 4 and 5). The global epigenetic profile is thus 
strongly associated with alteration of the histone H3 variant mark. 
Interestingly, TP53 alteration was associated with increased broad 
copy number changes as we previously showed2 (average of 32 events 
per sample), indicating a level of genomic instability. The number 
of copy number changes was significantly higher in samples with 
the histone H3.3 p.Gly34Arg or p.Gly34Val alteration than in other 
groups (P = 0.02997; Supplementary Table 7), in keeping with global 
hypomethylation identified in these tumors4.

The gain-of-function alterations in three growth factor recep-
tor genes—ACVR1, FGFR1 and PDGFRA—associate with histone 
H3 p.Lys27Met variants in midline HGA. These mutations are not 
seen concurrently, and ACVR1 and FGFR1 mutations are mutually 
exclusive with TP53 alterations and privilege specific locations within 
the midline of the brain. ACVR1 mutations do not seem to correlate 
with differential survival in patients with HGA, although no defi-
nite conclusions can be drawn because of our limited sample size 
(Supplementary Fig. 6). The lack of reported central nervous sys-
tem (CNS) tumor development in humans with FOP or Acvr1 (Alk2) 
mouse models suggests that aberrant activation of this pathway is not 
sufficient for tumorigenesis10 and that it may act in concert with his-
tone H3 p.Lys27Met substitution and other alterations we identified 
in the PI3K pathway to induce tumorigenesis (Fig. 1). Interestingly,  
ACVR1 is mainly expressed at embryonic day (E) 14 in the cortex of 
mouse embryos and at very low levels in the brainstem, and aber-
rantly active ACVR1 leads to increased ventralization of zebrafish 
embryos11,12,21. Aberrant ACVR1 signaling in the brainstem, a mid-
line structure, may specify a patterning defect in DIPG, as this gene 
is involved in left-right patterning development. FGFR signaling 
regulates neural progenitor maintenance and the development of the 
ventral midbrain22. Similar to ACVR1 mutations, the FGFR1 gain-
of-function mutations we identify only lead to grade I astrocytomas 
if present on their own in a tumor8 and are commonly found in asso-
ciation with NF1 and histone H3.3 p.Lys27Met alterations in midline 
HGA. Mutations affecting histone H3 variants in pediatric HGAs 
mirror IDH gene mutations in their requirement for additional altera-
tions to potentially induce HGA. Mutations encoding p.Gly34Arg and 
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HIST1H3C.K27M
HIST1H3B.K27M

Figure 3  Clustering analysis of global DNA 
methylation profiles for 98 high-grade 
astrocytomas. Global DNA methylation 
clustering analysis of high-grade astrocytomas 
distributed across the brain demonstrates 
similar impact on epigenomic dysregulation 
caused by p.Lys27Met alteration regardless of 
age, brain location, associated mutations or the 
particular histone H3 variant affected. The top 
10,000 most variable normalized methylation 
β values were used for UPGMA clustering with 
alterations of interest indicated. Robustness 
was assessed using multiscale bootstrapping 
(Supplementary Fig. 5). Detailed information 
regarding sample clinicopathological 
characteristics is included in Supplementary 
Table 1, with methylation-derived CNVs 
presented in Supplementary Tables 4 and 5.
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p.Gly34Val have been found in H3F3A and not in other histone genes 
thus far and invariably associate with TP53 and ATRX mutations in 
the cortex. In mHGA, mutations encoding p.Lys27Met arise in differ-
ent histone H3 variants depending on age and tumor location. They  
associate with TP53 mutations or with activated neurodevelopmen-
tal growth factor receptor pathways through distinct hits in ACVR1, 
FGFR1 or PDGFRA to achieve tumorigenesis. These alterations in 
growth factor receptors and in members of the PI3K pathway offer 
previously unforeseen therapeutic possibilities in a deadly cancer, 
while the observed level of genomic instability calls for caution in 
the choice of adjuvant therapy whenever possible. Notably, we show 
that small-needle pretherapy biopsies can reliably identify the muta-
tional landscape in HGA. This technique will allow for the tailoring 
of available therapies to the results obtained from stereotactic biopsy 
in children affected by this fatal brain tumor while effort continues 
to be made to target p.Lys27Met histone alterations.

URLs. FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/; 
Genome Analysis Toolkit (GATK), http://www.broadinstitute.org/
gsa/wiki/; Picard, http://picard.sourceforge.net/; SAMtools, http://
samtools.sourceforge.net/; BLAST, http://blast.ncbi.nlm.nih.gov/
Blast.cgi; Ensembl, http://useast.ensembl.org/index.html; UniProt, 
http://www.uniprot.org/; UCSC Genome Browser, http://genome.
ucsc.edu/; dbSNP, http://www.ncbi.nlm.nih.gov/SNP/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Whole-exome sequencing data can be accessed 
through the European Genome-phenome Archive (EGA) under 

accession EGAS00001000720. DNA methylation data can be accessed 
through the Gene Expression Omnibus (GEO) under accession 
GSE55712.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 4  Mutations identified in ACVR1 are associated with activation 
of downstream SMAD signaling pathways. (a) Distribution of alterations 
identified in ACVR1 (n = 5) demonstrating the impact of amino acid 
substitutions on the kinase domain of the protein. ECD, extracellular 
domain; TM, transmembrane domain; GS, glycine-serine-rich domain. 
(b) Immunoblotting analysis of phosphorylated SMAD1/5/8 levels in NHA 
cells with wild-type ACVR1 grown in 10% FBS or in NHA and DIPGIV cells 
(ACVR1 mutation encoding p.Gly328Val) starved for 1 h in medium free 
of serum and growth factors (0%). (c) Quantitative PCR (qPCR) analysis of 
the expression of the downstream BMP effectors ID1, ID2, ID3 and SNAI1  
in ACVR1-mutant DIPGIV cells and in the glioblastoma (GBM) cell line 
KNS42 with wild-type ACVR1. Values represented are fold changes 
calculated using the 2−∆∆Ct method, normalized to ACTB expression in 
calibrator NHA cells. P values were calculated using two-tailed t tests for 
significance, with error bars representing s.d. from two technical replicates.
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ONLINE METHODS
Patient samples and consent. All samples were obtained with informed 
consent after approval of the institutional review boards (IRBs) of the respec-
tive hospitals they were treated in and were independently reviewed by sen-
ior pediatric neuropathologists (S.A. and K.L.L.) according to World Health 
Organization (WHO) guidelines. Samples were obtained from the Montreal 
Children’s Hospital (Montreal, McGill University Health Centre), Boston 
Children’s Hospital (Boston, Harvard University), the Brain Tumor Toronto 
Bank (BTTB; Toronto, University Health Network) and from collabora-
tors in Hungary, in addition to previously published mHGA samples2,5 with  
sequencing data (n = 11) and with previously published DNA methylation 
data (n = 89) for a total of 98 tumors included herein for DNA methylation and 
copy number variant (CNV) analysis4,5. DIPG biopsy samples obtained before 
therapy were from Dana-Farber Cancer Institute protocol 10-321 (n = 12),  
a prospective phase II biopsy study of newly diagnosed DIPG. The protocol  
is IRB approved through the Dana-Farber Harvard Cancer Center IRB, FDA 
IND 111,882, http://ClinicalTrials.gov/ identifier  NCT01182350, and has local  
institutional approval at all participating sites; informed consent was obtained from 
all parents. Additional pediatric midline HGA samples were from needle biopsies 
or partial resections before treatment (n = 28). Sequencing and clinical data for this 
cohort are presented in Supplementary Table 1, and methylation-derived CNVs 
in genes of interest are presented in Supplementary Tables 4 and 5.

Whole-exome DNA sequencing. Standard genomic DNA extraction methods 
were performed according to described company protocols (Qiagen). Paired-
end library preparations were carried out using the Nextera Rapid Capture 
Exome kit according to instructions from the manufacturer (Illumina) from 
50 ng of total starting genomic DNA. Sequencing was performed in rapid-run 
mode with 100-bp paired-end reads on an Illumina HiSeq 2000. We removed 
adaptor sequences, quality trimmed reads using the FASTX-Toolkit and then 
used a custom script to ensure that only read pairs with both mates present 
were subsequently used. Reads were aligned to hg19 with Burrows-Wheeler 
Aligner (BWA) 0.5.9 (ref. 23), and indel realignment was performed using 
the Genome Analysis Toolkit (GATK)24. Duplicate reads were then marked 
using Picard and excluded from downstream analyses. We assessed coverage 
of consensus coding sequence (CCDS) bases using GATK, which showed that 
the majority of samples had >92% of CCDS bases covered by at least 10 reads 
and >88% of CCDS bases covered by at least 20 reads.

For each sample, SNVs and short indels were called using SAMtools  
mpileup25 with the extended base alignment quality (BAQ) adjustment (–E) and 
were then quality filtered to require at least 20% of reads supporting each vari-
ant call. Variants were annotated using both ANNOVAR26 and custom scripts to 
identify whether they affected protein-coding sequence and whether they had 
previously been seen in the 1000 Genomes Project data set (November 2011), 
the National Heart, Lung, and Blood Institute (NHLBI) Grand Opportunity 
(GO) exomes or in approximately 1,000 exomes previously sequenced at our 
center. Variants in candidate genes of interest described herein in the midline 
HGA cohort (n = 39) are detailed in Supplementary Table 6.

MiSeq targeted high-depth DNA sequencing of H3F3A, HIST1H3B and 
HIST1H3C. Genomic DNA from midline HGA samples was used for high-
depth sequencing of the H3F3A, HIST1H3B and HIST1H3C genes to inves-
tigate the frequency of reads encoding p.Lys27Met in samples, notably those 
wild type by whole-exome sequencing and high-resolution melting assays. 
Midline HGAs (n = 24) were sequenced using the MiSeq sequencing platform 
(Illumina) with an average coverage of >20,000× of the analogous p.Lys27Met 
base change across the three histone variants (more specifically, for the H3F3A 
gene, the average coverage was >12,000×, for the HIST1H3B gene, the coverage 
was >12,000×, and, for the HIST1H3C gene, the coverage was >35,000×). Reads 
were mapped to the reference genome (human hg19) using the BWA genome 
aligner23. Alignment files were fed to the mpileup tool from the SAMtools 
package25 to find all the variations without any filter applied by the conven-
tional variant callers. An in-house parser program was developed to extract 
different variations at the desired positions (in this case, affecting Lys27) in 
the mapped paired reads covering the histone genes H3F3A, HIST1H3B and 
HIST1H3C. The results are provided in Supplementary Table 3.

RNA sequencing. RNA was extracted from case tumor mHGA37 using the 
Qiagen RNeasy Lipid Tissue Mini kit according to instructions from the manu-
facturer. Library preparation was performed with rRNA depletion methods 
according to instruction from the manufacturer (Epicentre) to achieve greater 
coverage of mRNA and other long noncoding transcripts. Paired-end sequenc-
ing was performed on the Illumina HiSeq 2000 platform.

RNA sequencing fusion analysis. RNA sequencing FASTQ files were used for 
fusion analysis with the deFuse software algorithm27 according to indicated 
settings. Algorithmic output was then analyzed for high-confidence fusion 
transcripts, which were then reconstructed in silico using online bioinformat-
ics tools and databases, including BLAST, Ensembl, UniProt and the UCSC 
Genome Browser, to assess impact on putative fusion proteins and compare 
them with existing, previously described fusions8,17.

TERT promoter mutation sequencing. Characterized mutations in the TERT 
promoter, C228T, and C250T variants with G>A nucleotide substitutions 
at genomic positions 1,295,228 and 1,295,250 (hg19), respectively28, were 
sequenced using the Sanger method in midline samples (n = 14) and corti-
cal samples (n = 10) using the following cycling conditions: 96 °C for 1 min,  
96 °C for 10 s, 60 °C for 5 s, 72 °C for 1 s and 72 °C for 30 s, repeated for  
33 cycles. Primer sequences are detailed in Supplementary Table 8.

DNA methylation analysis. Extracted tumor DNA was analyzed for genome-
wide DNA methylation patterns using the HumanMethylation450 BeadChip 
platform according to instructions from the manufacturer (Illumina) and 
analyzed as described in refs. 4,5. From the selection of probes on the array, 
we removed probes from sex chromosomes (chromosomes X and Y) as 
well as those located at sites with documented SNPs (according to dbSNP). 
Methylation values were normalized using the Subset-quantile Within Array 
Normalization (SWAN) procedure provided in the R package minfi29. We 
performed hierarchical clustering using the 10,000 most variable sites. 
Distance was assessed using d = 1 − r, where r is the Pearson product-moment 
coefficient. Clustering was performed using average linkage (UPGMA) and 
was validated for the robustness of the procedure via multiscale resampling 
(1,000 iterations) using the R package pvclust30 (Supplementary Fig. 5).

Copy number variant detection. To assay CNVs in our samples, we used a 
methylation-based method and controls implemented in the R/Bioconductor 
packages CopyNumber450k and CopyNumber450kData, respectively. CNV 
analysis for copy number gains and losses in previously described genes of 
interest is presented in Supplementary Tables 4 and 5, respectively. Gross 
genomic aberrations were assessed using UCSC Genome Browser banding and 
our in-house algorithm described above. Bands covered with >90% signifi-
cantly amplified or deleted segments were counted as ‘abnormal’ and summed 
for each sample. Samples were grouped together by mutation type, and a  
t test was performed to assess statistically significant differences in aberration 
count between mutation subgroups. CNV analysis for broad areas of genomic 
instability is included in Supplementary Table 7.

Cell lines and protein blotting. hTert-immortalized NHAs were obtained 
from A. Guha (Labatt Brain Tumour Centre) and were grown in DMEM 
supplemented with 10% FBS as previously described. The DIPGIV primary 
cell line (a kind gift from M. Monje, Stanford University) and KNS42 cells  
(purchased from the Japanese Collection of Research Bioresources (JCRB) 
Cell Bank) were grown as previously described31. Mycoplasma-tested cell 
lines were starved of serum and growth factors for 1 h before protein extrac-
tion. Proteins were extracted in Tris-NaCl-EDTA lysis buffer as previously 
described32, and blotting was performed for phosphorylated SMAD1/5/8 (Cell 
Signaling Technology, 9511; 1:500 dilution in 5% BSA solution) on total lysates 
from NHA cells and from DIPGIV cells as previously described12. β-actin 
(13E5, Cell Signaling Technology, 4970; 1:1,000 dilution in 5% BSA solution) 
was used as a loading control.

Quantitative PCR for BMP target genes. qPCR was performed to assess the 
levels of activity downstream of the ACVR1 (ALK2) receptor in total RNA 
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extracted from DIPGIV (H3.1 Lys27Met, ACVR1 Gly328Val), KNS42 (H3.3 
Gly34Val, ACVR1 wild type) and NHA cells grown in DMEM supplemented 
with 10% FBS using ID1, ID2, ID3 and SNAI1 with the primer sequences 
detailed in Supplementary Table 8. Briefly, total RNA was extracted using 
the miRNeasy mini kit (Qiagen) according to the manufacturer’s instruc-
tions, with purity and integrity assessed using Nanodrop (Thermo Fisher) and 
Experion (Bio-Rad) methodologies. RNA (100 ng) was used for reverse tran-
scription with iScript RT Supermix (Bio-Rad) following the manufacturer’s  
instructions. RT-PCR was run on a LightCycler 96 (Roche) with the SsoFast 
Evagreen SuperMix kit (Bio-Rad). Cycling conditions were 95 °C for 30 s 
followed by 40 cycles of 95 °C for 5 s and 60 °C for 20 s. Fold change values 
were calculated using the 2−∆∆Ct method with ACTB expression and NHA 
cells used as the calibrator.

Immunohistochemistry. Immunohistochemistry was performed on  
formalin-fixed, paraffin-embedded slides from case with (n = 4) or  
without (n = 3) ACVR1 mutation and control normal brain (n = 1) to assess 
phosphorylation of SMAD1/5/8 downstream of the ACVR1 (ALK2) receptor 
(reviewed in ref. 33). Immunohistochemistry was carried out as previously 
described34 using antibodies to phosphorylated SMAD1/5/8 (Cell Signaling 
Technology, 9511; 1:50 dilution) and SMAD1 (Invitrogen, 38-5400; 1:100 
dilution). Immunohistochemistry processing and imaging were performed 
blinded to ACVR1 mutation status with representative images presented  
in Figure 2.

FISH for PDGFRA amplification. FISH was performed as previously 
described in refs. 35,36. Briefly, FISH was performed using 4-µm tissue sec-
tions from a subset of midline HGAs, with a BAC probe directed against the 
PDGFRA genomic locus in chromosomal region 4q12 (RP11-231c18; green) 
and a probe directed against 4p11.2-4q11.1 (CEN4; red) as a control to visualize  

chromosome 4. Scoring is included in Supplementary Table 1, and representa-
tive images are shown in Supplementary Figure 2.
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