281 research outputs found

    Atheists versus Theists: Religious Polarisation in Arab Online Communities

    Get PDF

    Spiritual polarisation on social media: the case of Arab atheists on Twitter

    Get PDF
    Social media platforms provide an unprecedented method of communication, and they are considered an integral part of people's lifestyles. Also, these platforms facilitate forming communities, groups and networks. Hence, it attracted researchers to study people's interactions and analyse the enormous human-generated data. In this thesis, I focus on studying the online Arab communities as a case study of online communities to understand online spiritual-based groups and the polarisation among them. This work combines multi-disciplinary approaches of natural language processing, information retrieval, data science and social and technological networks to understand better the online social behaviour of Arabs with different religious beliefs. I explore the discussion among Arab Twitter users from religious and atheistic groups. I identify four types of Twitter users based on how they describe themselves: Atheistic, Theistic, Tanweeri (reformers), and Rationalists. This study shows that Arabs from different religious spectrums get involved in online discussions on local and regional topics. I collected two datasets from Twitter for users who discussed religions and atheism, in which I considered about 434 accounts in the first dataset and 2,673 accounts in the second one. The analysis shows that, whatever their attitude towards religions, Arab Twitter users tend to use their accounts to promote their beliefs and to show their stances towards others. I showed that the data that was generated by these four groups illustrate the rich socio-cultural context in which discussions among believers, non-believers and religious reformers unfold. I showed that there is a clear online polarisation between atheists and theists, while Rationalist and Tanweeri accounts are spread among and between the two polarised groups. Arab atheists are separated into two groups in terms of engagement based on the accounts they prefer to interact-with. I found that Arab atheists and theists mention and reply-to users from any religious groups and vice versa, but they tend to retweet and follow accounts from their own group. The findings of this thesis provide insights for researchers to understand the case study of Arab online communities and the religious and non-religious online polarisation. Also, it shows the implications for the studies of spiritual discourse on social media and provides a better cross-cultural understanding of relevant aspects

    A Reconfigurable Multipurpose SoC Mobile Platform for metal detection

    Get PDF
    Background and Objectives One of the key problems in mobile robotics is the ability to understand and analyze the surrounding environment in a useful way. This is especially important in dangerous applications where human involvement should be avoided. A clear example of employing the robots in dangerous applications is mine detection which is mostly done through metal detection techniques. Among the various types of walking robots, Hexapod walking robots offer a good static stability margin and faster movement especially in rough terrain applications [1] Thus, the “Hexapod Terasic Spider Robot” is a suitable platform for the metal detection purpose especially that it is equipped with Altera DE0-Nano field programmable gate arrays (FPGA) SoC which allows for extremely high performance and accuracy. This work introduces a novel implementation of a metal detection module on the Terasic Spider Robot; the metal detection module is designed and interfaced with the robot in order to perform the metal detection. The user can control the robot and receive the feedback through a Bluetooth-enabled android phone. In addition, a general-purpose design flow that can be used to implement other applications on this platform is proposed. This proves the versatility of the platform as well.Method The designed metal detection module (MDM) is mainly based on an oscillator and a coil, its operation principle is that when the coil approaches a metal, the frequency of the oscillator will change [2]. This frequency change can be accurately monitored in real time using the FPGA SoC board. Thus, the module can be used for detecting metals. The metal detection module is interfaced with DE0-Nano SoC board where the detection algorithm is implemented. The development of the algorithm is carried out on the board available on this robot. The board includes a FPGA, which provides a high-performance and real-time implementation of parts of the algorithm, and a hard processor system (HPS) running Linux OS which can be used to easily interface the board with other computer systems and peripherals such as mobile phones and cameras[3]. As shown in Fig. 1, the detection algorithm is based on hardware/software co-design; the output of the MDM is provided to the FPGA part of the board in order to achieve an accurate and real-time monitoring. Upon detection, the FPGA sends a detection signal through the shared memory interface to the HPS part of the board. The HPS is then responsible for sending a warning to the mobile through multi-threaded communication application that is running on the HPS. Figure 1 General architecture of the metal detection system In order to implement the metal detection algorithm on the Terasic Spider Robot, it was necessary to formulate and follow the design flow provided in Fig. 2. This design flow can be used to implement other applications that can utilize the hardware/software co-design approach for better performance. Figure 2 General purpose design flow for the Altera Terasic Spider Robot Platform. Results and discussion Due to the coil specification and the circuit design. The frequency captured at normal situations is (no metal presence) is 2155 ± 20 Hz. The frequency increases Inversely proportional to the distance of the metal from the coil. In other words, the frequency increases when the distance between the metal and the coil decrease. When a metal whose size is at least the same size as the coil is present at 7 cm distance from the detection coil, the frequency will exceed 2200 Hz Regardless of the medium. The tested medium is wood. However, similar results were obtained with air medium. These numbers are specific to the proposed system. Changing the circuit parameters will increase the detection distance if desired. For example, having more coil turns and bigger diameter as well as faster oscillation will increase the detection distance. To avoid any interference between the robot body and the metal detection circuit readings, a 15 inches plastic arm is used to connect the metal detection module to the body of the robot. The electronics components is attached to this arm to the nearest possible point to the coil. The metal detection module attached to a plastic arm and then to the robot. the metal detection module and the spider robot is shown in Fig. 3 and 4 respectively. Figure 3 The Metal Detection Circuit Combined with the Arm Fig. 4 MDM Connected to the Terasic Spider Robot The robot is then controlled through a mobile application, the mobile application is modified so that the robot can send feedback (detection warning) to the mobile phone. Figure 5 shows an example of the notification message «Metal Detected» whenever a metal is detected. Figure. 5. Metal Detection Message for Mobile Application Interface Summary and Conclusion This abstract includes a general description of research project that aims to utilize the Terasic Spider Robot platform to perform accurate and real-time metal detection. This is an important application that helps humans avoid involvement in dangerous operations like mine detection. Nonetheless, a general-purpose design flow is proposed for the benefit of the research community and anyone who intends to implement an application on this platform in the future. Acknowledgment This project was funded by Qatar University Internal Grants program. References [1] Y. Zhu, B. Jin, Y. Wu, T. Guo and X. Zhao, «Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet», Sensors, vol. 16, no. 9, p. 1392, 2016. [2] T. Alauddin, M. T. Islam and H. U. Zaman, «Efficient design of a metal detector equipped remote-controlled robotic vehicle,» 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, 2016, pp. 1-5 [3] «Cyclone V Device Overview», Altera, 2016. [Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf. [Accessed: 16- Oct- 2017]qscienc

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan ÎČ = 30, A 0 = −2m 0 and ÎŒ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 ÎŒb −1 ÎŒb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  Όb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this Ο range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy
    • 

    corecore