112 research outputs found

    Los meteoros

    Get PDF
    Cartel explicativo de los tipos de meteoros que podemos encontrar: hidrometeoros, litometeoros, fotometeoros y electrometeoros

    Las nubes

    Get PDF
    Cartel explicativo de los tipos de nubes que podemos encontrar, incluyendo los géneros y las especies

    Expansion of elevational range in a forest pest: Can parasitoids track their hosts?

    Get PDF
    We are thankful to Karim Senhadji and Ramon Ruiz-Puche for their help during the field work, and to Sara Garcia Morato for her contribution to quantifying rates of parasitism in PPM clutches at the laboratory. Two anonymous referees contributed to improve the manuscript. This study was supported by projects PROPINOL (PN22/2008), GESBOME (P06-RNM-1890) from Junta de Andalucia, REMEDINAL TE-CM (S2018/EMT-4338) from Comunidad de Madrid, ADAPTAMED (LIFE14 CCA/ES/000612) from LIFE program, and GILES (PCIN-2016-150) from the ERANET-LAC H2020 Programme.Gradients in elevation impose changes in environmental conditions, which in turn modulate species distribution and abundance as well as the interactions they maintain. Along the gradient, interacting species (e.g., predators, parasitoids) can respond to changes in different ways. This study aims to investigate how egg parasitism of a forest pest, the pine processionary moth (PPM), Thaumetopoea pityocampa, vary along an elevational gradient (190-2000 m.a.s.l.) in a mountain range of SE Spain, including areas of recent elevational expansion, for a seven years period (2008-2014). We used generalized linear mixed models to ascertain the effect of both elevation and the winter North Atlantic Oscillation (NAO) index (a proxy of interannual climatic conditions) on the rate of parasitism, and the occurrence probabilities of two parasitoid species: a PPM specialist and a generalist species. Since four pine species are stratified along the elevational gradient, we repeated all the analyses separately for lowlands (190-1300 m. a.s.l.) and uplands (1350-2000 m. a.s.l.). Results showed a decrease in both parasitism rate and probability of occurrence of the two main parasitoid species with elevation, although decline was more severe for the specialist species. The effect of elevation was more conspicuous and intense in uplands than in lowlands. Positive NAO winter values, associated with cold and dry winters, reduced the rate of parasitism and the probability of occurrence of the two main parasitoid species-but particularly for the generalist species-as elevation increases. In a context of climate warming, it is crucial to mitigate PPM elevational and latitudinal expansion. Increasing tree diversity at the PPM expansion areas may favor the establishment of parasitoids, which could contribute to synchronizing host- parasitoid interactions and minimize the risk of PPM outbreaks.Junta de Andalucia PN22/2008REMEDINAL TE-CM from Comunidad de Madrid S2018/EMT-4338ADAPTAMED from LIFE program LIFE14 CCA/ES/000612GILES from the ERANET-LAC H2020 Programme PCIN-2016-150Junta de Andalucia P06-RNM-189

    Biomass-modulated fire dynamics during the last glacial-interglacial transition at the central pyrenees (Spain)

    Get PDF
    Understanding long-term fire ecology is essential for current day interpretation of ecosystem fire responses. However palaeoecology of fire is still poorly understood, especially at high-altitude mountain environments, despite the fact that these are fire-sensitive ecosystems and their resilience might be affected by changing fire regimes. We reconstruct wildfire occurrence since the Lateglacial (14.7. cal. ka BP) to the Mid-Holocene (6. cal. ka BP) and investigate the climate-fuel-fire relationships in a sedimentary sequence located at the treeline in the Central Spanish Pyrenees. Pollen, macro- and micro-charcoal were analysed for the identification of fire events (FE) in order to detect vegetation post-fire response and to define biomass-fire interactions. mean fire intervals (mfi) reduced since the Lateglacial, peaking at 9-7.7. cal. ka BP while from 7.7 to 6. cal. ka BP no fire is recorded. We hypothesise that Early Holocene maximum summer insolation, as climate forcing, and mesophyte forest expansion, as a fuel-creating factor, were responsible for accelerating fire occurrence in the Central Pyrenees treeline. We also found that fire had long-lasting negative effects on most of the treeline plant communities and that forest contraction from 7.7. cal. ka BP is likely linked to the ecosystem's threshold response to high fire frequencies.This research has been funded by the projects DINAMO (CGL2009-07992) (funding EGPF — grant ref. BES-2010-038593 and MSC), DINAMO2 (CGL2012-33063), ARAFIRE (2012 GA LC 064), GRACCIE-CONSOLIDER (CSD2007-00067). GGR was funded by the Juan de la Cierva Program (grant ref. JCI2009-04345) and JAE-Doc CSIC Program, LLM was supported by a postdoctoral MINT fellowship funded by the Institute for the Environment (Brunel University), AMC is a Ramón y Cajal fellow (ref: RYC-2008-02431), APS holds a grant funded by the Aragon Government (ref. 17030G/5423/480072/14003) and JAE holds a grant funded by the Basque Country Government (BFI-2010-5)

    Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution

    Get PDF
    This work analyses three uncertainty sources affecting the observation-basedgridded data sets: station density, interpolation methodology and spatial resolution.For this purpose, we consider precipitation in two countries, Poland and Spain,three resolutions (0.11, 0.22 and 0.44 ), three interpolation methods, both areal-and point-representative implementations, and three different densities of theunderlying station network (high/medium/low density). As a result, for each resolu-tion and interpolation approach, nine different grids have been obtained for eachcountry and inter-compared using a variance decomposition methodology.Results indicate larger differences among the data sets for Spain than for Poland,mainly due to the larger spatial variability and complex orography of the formerregion. The variance decomposition points out to station density as the most influ-ential factor, independent of the season, the areal- or point-representative imple-mentation and the country considered, and slightly increasing with the spatialresolution. In contrast, the decomposition is stable when extreme precipitation indi-ces are considered, in particular for the 50-year return value.Finally, the uncertainty due to station sub-sampling inside a particular grid boxdecreases with the number of stations used in the averaging/interpolation. In thecase of spatially homogeneous grid boxes, the interpolation approach obtains simi-lar results for all the parameters, excepting the wet day frequency, independently ofthe number of stations. When there is a more significant internal variability in thegrid box, the interpolation is more sensitive to the number of stations, pointing outto a minimum stations?density for the target resolution (six to seven stations).VALUE has been funded as EU COST Action ES1102. Participation of S.H. and J.M.G. was partially supported by theproject MULTI-SDM (CGL2015-66583-R, MINECO/FEDER). P.M.M.S. and R.M.C. wish to acknowledge the projects SOLAR (PTDC/GEOMET/7078/2014) and FCTUID/GEO/50019/ 2013 - Instituto Dom Luiz, both financedby the Fundação para a Ciência e Tecnologia. We acknowl-edge the E-OBS data set from the EU-FP6 project ENSEM-BLES (http://ensembles-eu.metoffice.com) and the dataproviders in the ECA&D project (http://www.ecad.eu)

    Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands.

    Get PDF
    Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non- native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non- native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non- native species were present in the studied elevational gradients. Ecological, anthropo- genic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non- native species from high elevations indicating direc- tional ecological filtering. Increase in ecological isolation with elevation drives diversi- fication and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest’s environmental uniqueness— and thus ecological isolation—beyond the Macaronesian islands
    corecore