7,934 research outputs found

    Determined to die! Ability to act following multiple self-inflicted gunshot wounds to the head. The cook county office of medical examiner experience (2005-2012) and review of literature

    Get PDF
    Cases of multiple (considered 2+) self-inflicted gunshot wounds are a rarity and require careful examination of the scene of occurrence; thorough consideration of the decedent’s psychiatric, medical, and social histories; and accurate postmortem documentation of the gunshot wounds. We present a series of four cases of multiple self-inflicted gunshot wounds to the head from the Cook County Medical Examiner’s Office between 2005 and 2012 including the first case report of suicide involving eight gunshot wounds to the head. In addition, a review of the literature concerning multiple self-inflicted gunshot wounds to the head is performed. The majority of reported cases document two gunshot entrance wound defects. Temporal regions are the most common affected regions (especially the right and left temples). Determining the capability to act following a gunshot wound to the head is necessary in crime scene reconstruction and in differentiation between homicide and suicide

    Minimum Cuts in Near-Linear Time

    Full text link
    We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a ``semi-duality'' between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized algorithm that finds a minimum cut in an m-edge, n-vertex graph with high probability in O(m log^3 n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n^2 log n) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O(n^2 log^3 n). Other applications of the tree-packing approach are new, nearly tight bounds on the number of near minimum cuts a graph may have and a new data structure for representing them in a space-efficient manner

    Temperature-Induced Shape Memory Characteristics of Epoxy Resin-Based Fabric-Reinforced Composites

    Get PDF
    Shape memory characteristics of woven glass and carbon fiber fabric reinforced epoxy resin-based composites were assessed in bending mode using a dynamic mechanical analyzer. The reinforcement strongly improved the recovery stress but impaired the bending deformability. Composites with asymmetric fabric lay-up showed better performance when the reinforced section experienced local tension than compression during flexural loading

    Shape memory performance of asymmetrically reinforced epoxy/carbon fibre fabric composites in flexure

    Get PDF
    In this study asymmetrically reinforced epoxy (EP)/carbon fibre (CF) fabric composites were prepared and their shape memory properties were quantified in both unconstrained and fully constrained flexural tests performed in a dynamic mechanical analyser (DMA). Asymmetric layering was achieved by incorporating two and four CF fabric layers whereby setting a resin- and reinforcement-rich layer ratio of 1/4 and 1/2, respectively. The recovery stress was markedly increased with increasing CF content. The related stress was always higher when the CF-rich layer experienced tension load locally. Specimens with CF-rich layers on the tension side yielded better shape fixity ratio, than those with reinforcement layering on the compression side. Cyclic unconstrained shape memory tests were also run up to five cycles on specimens having the CF-rich layer under local tension. This resulted in marginal changes in the shape fixity and recovery ratios

    Linear-Time Poisson-Disk Patterns

    Get PDF
    We present an algorithm for generating Poisson-disc patterns taking O(N) time to generate NN points. The method is based on a grid of regions which can contain no more than one point in the final pattern, and uses an explicit model of point arrival times under a uniform Poisson process.Comment: 4 pages, 2 figure

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function

    Does Confidence Reporting from the Crowd Benefit Crowdsourcing Performance?

    Full text link
    We explore the design of an effective crowdsourcing system for an MM-ary classification task. Crowd workers complete simple binary microtasks whose results are aggregated to give the final classification decision. We consider the scenario where the workers have a reject option so that they are allowed to skip microtasks when they are unable to or choose not to respond to binary microtasks. Additionally, the workers report quantized confidence levels when they are able to submit definitive answers. We present an aggregation approach using a weighted majority voting rule, where each worker's response is assigned an optimized weight to maximize crowd's classification performance. We obtain a couterintuitive result that the classification performance does not benefit from workers reporting quantized confidence. Therefore, the crowdsourcing system designer should employ the reject option without requiring confidence reporting.Comment: 6 pages, 4 figures, SocialSens 2017. arXiv admin note: text overlap with arXiv:1602.0057

    Wicked Problems and Gnarly Results: Reflecting on Design and Evaluation Methods for Idiosyncratic Personal Information Management Tasks

    No full text
    This paper is a case study of an artifact design and evaluation process; it is a reflection on how right thinking about design methods may at times result in sub-optimal results. Our goal has been to assess our decision making process throughout the design and evaluation stages for a software prototype in order to consider where design methodology may need to be tuned to be more sensitive to the domain of practice, in this case software evaluation in personal information management. In particular, we reflect on design methods around (1) scale of prototype, (2) prototyping and design process, (3) study design, and (4) study population
    • 

    corecore