129 research outputs found

    Disentangling the trajectories of alpha, beta and gamma plant diversity of North American boreal ecoregions since 15,500 years

    Get PDF
    Assessment of biodiversity in a changing world is a key issue and studies on the processes and factors influencing its history at relevant time scales are needed. In this study, we analyzed temporal trends of plant diversity using fossil pollen records from the North American boreal forest-taiga biome (NABT). We selected 205 pollen records spanning the last 15,500 years. Diversity was decomposed into α and γ richness, and β diversity, using Shannon entropy indices. We investigated temporal and spatial patterns of β diversity by decomposing it into independent turnover (variation in taxonomic composition due to species replacements) and nestedness (variation due to species loss) components. The palynological diversity of the NABT biome experienced major rearrangements during the Lateglacial and early Holocene in response to major climatic shifts. The β nestedness likely reflected plant immigration processes and generally peaked before the β turnover value, which mirrors spatial and temporal community sorting related to environmental conditions and specific habitat constraints. Palynological diversity was generally maximal during the Lateglacial and the early Holocene and decreased progressively during the Holocene. These results are discussed according to macro-ecological processes, such as immigration, disturbances, and environmental fluctuations, with climate most notably as the main ecological driver at millennial scales

    Tree cover in Central Africa: Determinants and sensitivity under contrasted scenarios of global change

    Full text link
    Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa. (Résumé d'auteur

    The Iberian Peninsula's Burning Heart' Long-Term Fire History in the Toledo Mountains (Central Spain)

    Get PDF
    Long-term fire ecology can help to better understand the major role played by fire in driving vegetation composition and structure over decadal to millennial timescales, along with climate change and human agency, especially in fire-prone areas such as the Mediterranean basin. Investigating past ecosystem dynamics in response to changing fire activity, climate, and land use, and how these landscape drivers interact in the long-term is needed for efficient nature management, protection, and restoration. The Toledo Mountains of central Spain are a mid-elevation mountain complex with scarce current anthropic intervention located on the westernmost edge of the Mediterranean basin. These features provide a perfect setting to study patterns of late Holocene fire activity and landscape transformation. Here, we have combined macroscopic charcoal analysis with palynological data in three peat sequences (El Perro, Brezoso, and Viñuelas mires) to reconstruct fire regimes during recent millennia and their linkages to changes in vegetation, land use, and climatic conditions. During a first phase (5000?3000 cal. BP) characterized by mixed oak woodlands and low anthropogenic impact, climate exerted an evident influence over fire regimes. Later, the data show two phases of increasing human influence dated at 3000?500 cal. BP and 500 cal. BP?present, which translated into significant changes in fire regimes increasingly driven by human activity. These results contribute to prove how fire regimes have changed along with human societies, being more related to land use and less dependent on climatic cycles.This research was funded the project REDISCO-HAR2017-88035-P (Plan Nacional I+D+I, Spanish Ministry of Economy and Competitiveness). Reyes Luelmo-Lautenschlaeger is funded by an Formación del Profesorado Universitario (FPU) grant (Spanish Ministry of Education, Culture, and Sports)

    Paleofire reconstruction based on an ensemble-member strategy applied to sedimentary charcoal

    Get PDF
    Paleofire events obtained from the statistical treatment of sedimentary charcoal records rely on a number of assumptions and user's choices, increasing the uncertainty of reconstructio\ns. Among the assumptions made when analyzing charcoal series is the choice of a filtering method for raw Charcoal Accumulation Rate (CHARraw). As there is no ultimate CHAR raw filtering method, we propose an ensemble-member approach to reconstruct fire events. We modified the commonly used procedure by including a routine replicating the analysis of a charcoal record using custom smoothing parameters. Dates of robust fire events, uncertainties in fire-return intervals and fire frequencies are derived from members' distributions. An application of the method is used to quantify uncertainties due to data treatment in two CHARraw sequences from two different biomes, subalpine and boreal

    Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments

    No full text
    Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3–5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk. © 2019 Dietze et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons

    Get PDF
    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000 year and 22 000 year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3, which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres, but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 {years}. We also discuss methodological issues relevant to data-model comparisons, and identify areas for future research. Spatially gridded versions of the global dataset from GCDv3 are provided to facilitate comparison with and validation of global fire simulations

    Biomass-modulated fire dynamics during the last glacial-interglacial transition at the central pyrenees (Spain)

    Get PDF
    Understanding long-term fire ecology is essential for current day interpretation of ecosystem fire responses. However palaeoecology of fire is still poorly understood, especially at high-altitude mountain environments, despite the fact that these are fire-sensitive ecosystems and their resilience might be affected by changing fire regimes. We reconstruct wildfire occurrence since the Lateglacial (14.7. cal. ka BP) to the Mid-Holocene (6. cal. ka BP) and investigate the climate-fuel-fire relationships in a sedimentary sequence located at the treeline in the Central Spanish Pyrenees. Pollen, macro- and micro-charcoal were analysed for the identification of fire events (FE) in order to detect vegetation post-fire response and to define biomass-fire interactions. mean fire intervals (mfi) reduced since the Lateglacial, peaking at 9-7.7. cal. ka BP while from 7.7 to 6. cal. ka BP no fire is recorded. We hypothesise that Early Holocene maximum summer insolation, as climate forcing, and mesophyte forest expansion, as a fuel-creating factor, were responsible for accelerating fire occurrence in the Central Pyrenees treeline. We also found that fire had long-lasting negative effects on most of the treeline plant communities and that forest contraction from 7.7. cal. ka BP is likely linked to the ecosystem's threshold response to high fire frequencies.This research has been funded by the projects DINAMO (CGL2009-07992) (funding EGPF — grant ref. BES-2010-038593 and MSC), DINAMO2 (CGL2012-33063), ARAFIRE (2012 GA LC 064), GRACCIE-CONSOLIDER (CSD2007-00067). GGR was funded by the Juan de la Cierva Program (grant ref. JCI2009-04345) and JAE-Doc CSIC Program, LLM was supported by a postdoctoral MINT fellowship funded by the Institute for the Environment (Brunel University), AMC is a Ramón y Cajal fellow (ref: RYC-2008-02431), APS holds a grant funded by the Aragon Government (ref. 17030G/5423/480072/14003) and JAE holds a grant funded by the Basque Country Government (BFI-2010-5)

    The climate, the fuel and the land use: long-term regional variability of biomass burning in boreal forests

    Get PDF
    The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (1) pollen-based mean July/summer temperature and mean annual precipitation reconstructions, (2) an independent model-based scenario of past land use (LU), and (3) pollen-based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (1) a west -east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (2) a north -south European boreal sector characterized by gradual variation in both climate and vegetation composition

    Coherent signature of warming-induced extreme sub-continental boreal wildfire activity 4800 and 1100 years BP

    Get PDF
    Climate changes are expected to progressively increase extreme wildfire frequency in forests. Finding past analogs for periods of extreme biomass burning would provide valuable insights regarding what the effects of warming might be for tree species distribution, ecosystem integrity, atmospheric greenhouse gas balance, and human safety. Here, we used a network of 42 lake-sediment charcoal records across a ~2000 km transect in eastern boreal North America to infer widespread periods of wildfire activity in association with past climate conditions. The reconstructed fluctuations in biomass burning are broadly consistent with variations in ethane concentration in Greenland polar ice cores. Biomass burning fluctuations also significantly co-varied with Greenland temperatures estimated from ice cores, at least for the past 6000 years. Our retrospective analysis of past fire activity allowed us to identify two fire periods centered around 4800 and 1100 BP, coinciding with large-scale warming in northern latitudes and having respectively affected an estimated ~71% and ~57% of the study area. These two periods co-occurred with widespread decreases in mean fire-return intervals. The two periods are likely the best analogs for what could be anticipated in terms of impacts of fire on ecosystem services provided by these forests in coming decades
    corecore